Difference between revisions of "Lecture 1."

From Maxwell
Jump to: navigation, search
(Differential Form)
(Differential Form)
Line 22: Line 22:
 
{| width=100%
 
{| width=100%
 
|- valign=top,  
 
|- valign=top,  
| width=15% |
+
| width=12% |
 
<math>\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}</math>
 
<math>\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}</math>
 
| width=70% |
 
| width=70% |
 
Faraday's Law;
 
Faraday's Law;
 
|- valign=top
 
|- valign=top
| width=15% |
+
| width=12% |
 
<math>\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}</math>
 
<math>\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}</math>
 
| width=70% |
 
| width=70% |
 
Ampere's Law
 
Ampere's Law
 
|- valign=top
 
|- valign=top
| width=1%5 |
+
| width=12% |
 
<math>\nabla\cdot\vec{D}=\rho</math>
 
<math>\nabla\cdot\vec{D}=\rho</math>
 
| width=15% |
 
| width=15% |
 
Gauss's Law, electric
 
Gauss's Law, electric
 
|- valign=top
 
|- valign=top
| width=15% |
+
| width=12% |
 
<math>\nabla\cdot\vec{B}=0</math>
 
<math>\nabla\cdot\vec{B}=0</math>
 
| width=70% |
 
| width=70% |

Revision as of 22:46, 23 February 2019

Instructor

  • Dániel Marcsa (lecturer)
  • Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
  • Office hours: by request

Teaching Assistants:

  • -
  • Office hours: -.

Basic Principle of Electromagnetic Theory

Electromagnetic theory forms the foundation of different physical fields and phenomenon. It is used to explain many wave phenomena like propagation, reflection, refraction, diffraction and scattering. In the following, we shall review the fundamental aspects of the electromagnetic theory.

Maxwell's Equations

The physics of electromagnetic field is described mathematically by the Maxwell's equations. These equations can be written in differential as well as integral forms. For time-varying electromagnetic fields, the Maxwell's equations are as follows.

Differential Form

[math]\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}[/math]

Faraday's Law;

[math]\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}[/math]

Ampere's Law

[math]\nabla\cdot\vec{D}=\rho[/math]

Gauss's Law, electric

[math]\nabla\cdot\vec{B}=0[/math]

Gauss's Law, electric

Constitutive Relations

Interface and Boundary Conditions

Electromagnetics Models - Static Fields

Static Magnetic Field

Electrostatic Field

References