Difference between revisions of "Lecture 1."
(→Differential Form) |
(→Differential Form) |
||
Line 22: | Line 22: | ||
{| width=100%, style="text-align: right;" | {| width=100%, style="text-align: right;" | ||
|- valign=top, | |- valign=top, | ||
− | | width= | + | | width=50% | |
<math>\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}</math> | <math>\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}</math> | ||
− | | width= | + | | width=50% | |
Faraday's Law; | Faraday's Law; | ||
|- valign=top | |- valign=top | ||
− | | width= | + | | width=5%0 | |
<math>\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}</math> | <math>\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}</math> | ||
− | | width= | + | | width=5%0 | |
Ampere's Law | Ampere's Law | ||
|- valign=top | |- valign=top | ||
− | | width= | + | | width=50% | |
<math>\nabla\cdot\vec{D}=\rho</math> | <math>\nabla\cdot\vec{D}=\rho</math> | ||
− | | width= | + | | width=5%0 | |
Gauss's Law, electric | Gauss's Law, electric | ||
|- valign=top | |- valign=top | ||
− | | width= | + | | width=5%0 | |
<math>\nabla\cdot\vec{B}=0</math> | <math>\nabla\cdot\vec{B}=0</math> | ||
− | | width= | + | | width=50% | |
Gauss's Law, electric | Gauss's Law, electric | ||
|} | |} |
Revision as of 21:53, 23 February 2019
Instructor
|
Teaching Assistants:
|
Contents
Basic Principle of Electromagnetic Theory
Electromagnetic theory forms the foundation of different physical fields and phenomenon. It is used to explain many wave phenomena like propagation, reflection, refraction, diffraction and scattering. In the following, we shall review the fundamental aspects of the electromagnetic theory.
Maxwell's Equations
The physics of electromagnetic field is described mathematically by the Maxwell's equations. These equations can be written in differential as well as integral forms. For time-varying electromagnetic fields, the Maxwell's equations are as follows.
Differential Form
[math]\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}[/math]
Faraday's Law;
[math]\nabla\times\vec{H}=\vec{J}_{\text{S}}+\frac{\partial D}{\partial t}[/math]
Ampere's Law
[math]\nabla\cdot\vec{D}=\rho[/math]
Gauss's Law, electric
[math]\nabla\cdot\vec{B}=0[/math]
Gauss's Law, electric