Difference between revisions of "Lecture 3."

From Maxwell
Jump to: navigation, search
(Quasistatic Electromagnetic Field)
Line 25: Line 25:
 
<blockquote>
 
<blockquote>
 
The most important case for electromagnetic equipment (sensors, actuators, motors, etc.) is the quasistatic case often referred to as the eddy current or magnetodynamic case. For quasistatic electromagnetic field we can neglect the displacement current density term <math>\partial \vec{D}/\partial t</math>, which gives Maxwell's equations to the following form
 
The most important case for electromagnetic equipment (sensors, actuators, motors, etc.) is the quasistatic case often referred to as the eddy current or magnetodynamic case. For quasistatic electromagnetic field we can neglect the displacement current density term <math>\partial \vec{D}/\partial t</math>, which gives Maxwell's equations to the following form
 +
 +
{| width=60%,
 +
|- valign=top
 +
| width=40%, style="text-align: right;" |
 +
<math>\nabla\times\vec{H}=\vec{J}</math>
 +
| width=20%, style="text-align: left;" |
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Ampere's law,
 +
|- valign=top, 
 +
| width=40%, style="text-align: right;" |
 +
<math>\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}</math>
 +
| width=20%, style="text-align: left;" |
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Faraday's law,
 +
|- valign=top
 +
| width=40%, style="text-align: right;" |
 +
<math>\nabla\cdot\vec{B}(\vec{r},t)=0</math>
 +
| width=20%, style="text-align: left;" |
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gauss's law (magnetic).
 +
|}
 +
 +
=== Magnetic Vector Potential ===
 +
According to <math>\nabla\cdot\vec{B}(\vec{r},t)=0</math> the magnetic flux density is conservative and therefore can be described by the '''curl''' of a vector
 +
 +
<math> \vec{B} = \nabla\times\vec{A},
 +
 +
where <math>\vec{A} is the magnetic vector potential [Wb/m]. This ansatz results for Faraday's law in the following relation
 +
 +
  
 
</blockquote>
 
</blockquote>

Revision as of 21:46, 12 March 2019

Coupled Finite Element Method / Time-Dependent Magnetic Field

Instructor

  • Dániel Marcsa (lecturer)
  • Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
  • Office hours: by request

Teaching Assistants:

  • -
  • Office hours: -.

Csatolt végeselem-módszer (FEM)


Quasistatic Electromagnetic Field

The most important case for electromagnetic equipment (sensors, actuators, motors, etc.) is the quasistatic case often referred to as the eddy current or magnetodynamic case. For quasistatic electromagnetic field we can neglect the displacement current density term [math]\partial \vec{D}/\partial t[/math], which gives Maxwell's equations to the following form

[math]\nabla\times\vec{H}=\vec{J}[/math]

          Ampere's law,

[math]\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}[/math]

          Faraday's law,

[math]\nabla\cdot\vec{B}(\vec{r},t)=0[/math]

          Gauss's law (magnetic).

Magnetic Vector Potential

According to [math]\nabla\cdot\vec{B}(\vec{r},t)=0[/math] the magnetic flux density is conservative and therefore can be described by the curl of a vector

<math> \vec{B} = \nabla\times\vec{A},

where <math>\vec{A} is the magnetic vector potential [Wb/m]. This ansatz results for Faraday's law in the following relation


Irodalom