Difference between revisions of "Lecture 3."

From Maxwell
Jump to: navigation, search
(Magnetic Vector Potential)
(Magnetic Vector Potential)
Line 49: Line 49:
 
<math> \vec{B} = \nabla\times\vec{A}</math>,
 
<math> \vec{B} = \nabla\times\vec{A}</math>,
  
where <math>\vec{A}</math> is the magnetic vector potential [Wb/m]. This ansatz results for Faraday's law in the following relation
+
where <math>\vec{A}</math> is the magnetic vector potential [Wb/m]. Substituting this expression into Faraday's law results in
  
+
<math>\nabla\times\vec{E}=-\frac{\partial}{\partial t} \left(\nabla\times\vec{A}\right)=-\nabla\times\lft(\frac{\partial\vec{A}}{\partial t}\right) \to \nabla\times\left(\vec{E}+\frac{\partial\vec{A}}{\partial t}\right)=\vec{0}\</math>,
 +
 
 +
because rotation (i.e. derivative by space) and derivation by time can be replaced. The curl-less vector field <math>\vec{E}+\partial\vec{A}/\partial t</math> can be derived from the so-called electric scalar potential <math>V</math> (<math>\nabla\times\nabla\phi\equiv0</math>, for any scalar function <math>\phi=\phi(\vec{r})</math>, or <math>\phi=\phi(\vec{r},t)</math>),
 +
 
 +
<math>\vec{E}+\frac{\partial\vec{A}}{\partial t}=-\nabla V</math>,
 +
 
 +
and the <math>\vec{E}</math> electric field intensity vector can be described by two potentials as
 +
 
 +
<math>\vec{E}=-\frac{\partial\vec{A}}{\partial t}-\nabla V</math>.
  
 
</blockquote>
 
</blockquote>

Revision as of 08:04, 13 March 2019

Coupled Finite Element Method / Time-Dependent Magnetic Field

Instructor

  • Dániel Marcsa (lecturer)
  • Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
  • Office hours: by request

Teaching Assistants:

  • -
  • Office hours: -.

Csatolt végeselem-módszer (FEM)


Quasistatic Electromagnetic Field

The most important case for electromagnetic equipment (sensors, actuators, motors, etc.) is the quasistatic case often referred to as the eddy current or magnetodynamic case. For quasistatic electromagnetic field we can neglect the displacement current density term [math]\partial \vec{D}/\partial t[/math], which gives Maxwell's equations to the following form

[math]\nabla\times\vec{H}=\vec{J}[/math]

          Ampere's law,

[math]\nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}[/math]

          Faraday's law,

[math]\nabla\cdot\vec{B}(\vec{r},t)=0[/math]

          Gauss's law (magnetic).

Magnetic Vector Potential

According to [math]\nabla\cdot\vec{B}(\vec{r},t)=0[/math] the magnetic flux density is conservative and therefore can be described by the curl of a vector

[math] \vec{B} = \nabla\times\vec{A}[/math],

where [math]\vec{A}[/math] is the magnetic vector potential [Wb/m]. Substituting this expression into Faraday's law results in

[math]\nabla\times\vec{E}=-\frac{\partial}{\partial t} \left(\nabla\times\vec{A}\right)=-\nabla\times\lft(\frac{\partial\vec{A}}{\partial t}\right) \to \nabla\times\left(\vec{E}+\frac{\partial\vec{A}}{\partial t}\right)=\vec{0}\[/math],

because rotation (i.e. derivative by space) and derivation by time can be replaced. The curl-less vector field [math]\vec{E}+\partial\vec{A}/\partial t[/math] can be derived from the so-called electric scalar potential [math]V[/math] ([math]\nabla\times\nabla\phi\equiv0[/math], for any scalar function [math]\phi=\phi(\vec{r})[/math], or [math]\phi=\phi(\vec{r},t)[/math]),

[math]\vec{E}+\frac{\partial\vec{A}}{\partial t}=-\nabla V[/math],

and the [math]\vec{E}[/math] electric field intensity vector can be described by two potentials as

[math]\vec{E}=-\frac{\partial\vec{A}}{\partial t}-\nabla V[/math].

Irodalom