Difference between revisions of "Lecture 1. - Assignment"

From Maxwell
Jump to: navigation, search
(Knowledge needed to solve the problem)
 
(67 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
|-
 
|-
 
| align=center |
 
| align=center |
[[Image:Injector3.gif|550px]]
+
[[File:Injector3.gif|550px]]
 
| align=center |
 
| align=center |
[[Image:Injector3.gif|550px]]
+
[[File:Pelda ResultsB.png|550px]]
 
|-
 
|-
|align=center | Animated cut through diagram of a typical fuel injector <ref>https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif</ref>
+
|align=center | <span style="font-size:88%;">'''The fuel injection in operation.'''</span> <ref>https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif</ref>
|align=center | Animated cut through diagram of a typical fuel injector [Click to see animation].
+
|align=center | <span style="font-size:88%;">'''The magnetic flux density vectors in the plunger after switch on the solenoid.'''</span>
 
|- valign=top
 
|- valign=top
 
| width=50% |
 
| width=50% |
 
'''Instructor'''
 
'''Instructor'''
* Dániel '''Marcsa''' (óraadó)
+
* [http://wiki.maxwell.sze.hu/index.php/Marcsa Dániel Marcsa] (lecturer)
 
* Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
 
* Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
 
* Office hours: by request
 
* Office hours: by request
Line 22: Line 22:
 
* Office hours: -.
 
* Office hours: -.
 
|}
 
|}
 +
<blockquote>
 +
=== Purpose of the Assignment ===
 +
The student will learn the main steps of the finite element method, such as creating the model (creating or importing geometry), specifying material parameters, boundary conditions, and excitation through simulation of the electromagnetic part of the fuel injector.
  
=== Aims of Assignment ===
+
=== Knowledge needed to solve the problem ===
A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása az üzemanyag befecskendező szolenoidjának szimulációján keresztül.  
+
* The steps of the finite element method;
 +
* Theoretical knowledge of the static magnetic field (for defining materials, for excitation);
 +
* Knowledge of the basics of [http://www.femm.info/wiki/HomePage FEMM] and [http://www.agros2d.org/ Agros2D].
  
=== A feladat megoldásához szükséges ismeretek ===
+
YouTube channel for [https://www.youtube.com/channel/UC7WzdNsW6Si-8e96mSluPPg Agros2D].<br/>
* A végeselem-módszer lépései;
+
There are also a lot of videos on YouTube for using FEMM. For example [https://www.youtube.com/watch?v=1BKCkvr83j4 FEMM Tutorial]
* A sztatikus mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához);
 
* A geometria elkészítéséhez CAD rendszer ismerete.
 
  
=== A feladat megoldásának lépései ===
+
== The Problem ==
  
Az ANSYS AIM elindítását követően kiválasztjuk az elektromágneses (Electromagnetics) feladatot a ''Start'' gombra kattintva.<br /> A következőkben bemutatott lépésektől eltérően is megvalósítható a feladat. Az AIM használata során a feladat elkészítésében segítséget nyújtanak a különböző lépések során megjelenő üzenetek.
+
[[File:Problem01_Definition_CrossSection.png|405px|thumb|left| |The cross-section view of the solenoid valve.]]
 +
The problem (if we neglect the transient state occurring at the switch on) can be considered as an axisymmetric static magnetic problem. The effect of the movement of the iron core (valve opening/closing) is also examined accordingly, i.e. each position is an individual simulation.
  
== A geometria elkészítése ==
+
The height of the cylindrical core is 14mm and the radii is 3.6mm.
 +
Dimensions of the coil: height is 20mm, inner radii is 4mm and outer radii is 10mm.
  
== Az anyagok definiálása ==
+
'''The materials:'''
 +
* '''Core/Vasmag:''' ''Steel'' with nonlinear B-H curve ([https://drive.google.com/open?id=1hNmLPbkWXmyxgudRVMNpHXozw-OwUGly Steel1008]);
 +
* '''Coil/Tekercs:''' ''Copper'' (<math>\mu_r = 1.0</math>) and the ''number of turns'' is 2000. The ''current'' is 0.2 A;
 +
* '''Region:''' ''Air'' (<math>\mu_r = 1.0</math>).
  
== A gerjesztés megadása ==
+
The task is to determine the inductance of the solenoid valve and the force acting on the iron core. As a first step, it is recommended to validate the simulation with the values given in the table when the iron core is in the middle of the solenoid. Then it is worth examining the two quantities as a function of the position of the iron core.
  
== A megoldó beállítása, a szimuláció futtatása ==
+
=== Inductance Calculation ===
 +
The most widely used method for determining inductance in finite element analysis is based on magnetic energy. From the magnetic energy, the inductance <math>L</math> can be determined by the following formula:
 +
::<math>L=\frac{2\cdot W_{\text{m}}}{I^2}</math>
 +
where <math>W_{\text{m}}</math> the magnetic energy of the whole problem and <math>I</math> is the current (in this case 0.2A).
  
== Az eredmények kiértékelése ==
+
=== Force Calculation ===
 +
The force acting on the iron core can also be determined by surface and line integration. In the case of surface integration, the core should be selected. However, in both cases, Maxwell's stress tensor (''FEMM'' - Force via Weighted Stress Tensor / ''Agros2D'' - Maxwell force - y) used for integration.
  
==References==
+
== Evaluation of Results ==
{{reflist}}
+
<blockquote>
 +
[[File:Pelda1 2D Megoldas.png|530px|thumb|left|alt=Coil inductance and plunger force in the function of plunger position. |Coil inductance and plunger force in the function of plunger position.]]
 +
 
 +
Here you can plot the field quantities (magnetic flux density, magnetic vector potential, etc.) and checked the value of the inductance of the coil and the acting force on the iron core. The following values were obtained for these quantities, the arrangement according to the cross-sectional view being 0 mm position.
 +
 
 +
{| class="wikitable" align=center style="text-align: center; width: 550px; height: 100px;"
 +
|+ The results of the simulation for validation.
 +
! Software
 +
! Maxwell 2D
 +
! Maxwell 3D
 +
! FEMM
 +
! Agros2D
 +
|-
 +
! Inductance [<math>\text{mH}</math>]
 +
| 51.911 || 51.812 || 51.821 || 51.89
 +
|-
 +
! Force [<math>\mu\text{N}</math>]
 +
| 88.603
 +
| 63.29
 +
| 74.53
 +
| 57.45
 +
|}
 +
 
 +
In addition, it is possible to parameterize the geometry or most of the simulation parameters (position, size, current, number, ...) via script (''FEMM - LUA script'', ''Agro2D - Python''). The result of a parameterized simulation is shown in the figure where the parameter is the position of the iron core. As a result, the modification of the parameter and the evaluation of results are automatic.
 +
</blockquote>
 +
 
 +
=== Knowledge needed to solve the problem ===
 +
The problem solution with
 +
* [https://youtu.be/bRMxkaXJnwQ FEMM]
 +
* [https://youtu.be/uO-jPNcDfIM Agros2D]
 +
 
 +
== References ==
 +
{{Reflist}}

Latest revision as of 09:59, 6 April 2021

Fuel Injection Solenoid

Injector3.gif

Pelda ResultsB.png

The fuel injection in operation. [1] The magnetic flux density vectors in the plunger after switch on the solenoid.

Instructor

  • Dániel Marcsa (lecturer)
  • Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
  • Office hours: by request

Teaching Assistants:

  • -
  • Office hours: -.

Purpose of the Assignment

The student will learn the main steps of the finite element method, such as creating the model (creating or importing geometry), specifying material parameters, boundary conditions, and excitation through simulation of the electromagnetic part of the fuel injector.

Knowledge needed to solve the problem

  • The steps of the finite element method;
  • Theoretical knowledge of the static magnetic field (for defining materials, for excitation);
  • Knowledge of the basics of FEMM and Agros2D.

YouTube channel for Agros2D.
There are also a lot of videos on YouTube for using FEMM. For example FEMM Tutorial

The Problem

The cross-section view of the solenoid valve.

The problem (if we neglect the transient state occurring at the switch on) can be considered as an axisymmetric static magnetic problem. The effect of the movement of the iron core (valve opening/closing) is also examined accordingly, i.e. each position is an individual simulation.

The height of the cylindrical core is 14mm and the radii is 3.6mm. Dimensions of the coil: height is 20mm, inner radii is 4mm and outer radii is 10mm.

The materials:

  • Core/Vasmag: Steel with nonlinear B-H curve (Steel1008);
  • Coil/Tekercs: Copper ([math]\mu_r = 1.0[/math]) and the number of turns is 2000. The current is 0.2 A;
  • Region: Air ([math]\mu_r = 1.0[/math]).

The task is to determine the inductance of the solenoid valve and the force acting on the iron core. As a first step, it is recommended to validate the simulation with the values given in the table when the iron core is in the middle of the solenoid. Then it is worth examining the two quantities as a function of the position of the iron core.

Inductance Calculation

The most widely used method for determining inductance in finite element analysis is based on magnetic energy. From the magnetic energy, the inductance [math]L[/math] can be determined by the following formula:

[math]L=\frac{2\cdot W_{\text{m}}}{I^2}[/math]

where [math]W_{\text{m}}[/math] the magnetic energy of the whole problem and [math]I[/math] is the current (in this case 0.2A).

Force Calculation

The force acting on the iron core can also be determined by surface and line integration. In the case of surface integration, the core should be selected. However, in both cases, Maxwell's stress tensor (FEMM - Force via Weighted Stress Tensor / Agros2D - Maxwell force - y) used for integration.

Evaluation of Results

Coil inductance and plunger force in the function of plunger position.
Coil inductance and plunger force in the function of plunger position.

Here you can plot the field quantities (magnetic flux density, magnetic vector potential, etc.) and checked the value of the inductance of the coil and the acting force on the iron core. The following values were obtained for these quantities, the arrangement according to the cross-sectional view being 0 mm position.

The results of the simulation for validation.
Software Maxwell 2D Maxwell 3D FEMM Agros2D
Inductance [[math]\text{mH}[/math]] 51.911 51.812 51.821 51.89
Force [[math]\mu\text{N}[/math]] 88.603 63.29 74.53 57.45

In addition, it is possible to parameterize the geometry or most of the simulation parameters (position, size, current, number, ...) via script (FEMM - LUA script, Agro2D - Python). The result of a parameterized simulation is shown in the figure where the parameter is the position of the iron core. As a result, the modification of the parameter and the evaluation of results are automatic.

Knowledge needed to solve the problem

The problem solution with

References

  1. https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif