Difference between revisions of "1. lecke"
(→Sztatikus mágneses tér) |
|||
(30 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{| width=100% | {| width=100% | ||
− | |- | + | |- |
− | | width | + | | colspan=2 align=center | |
+ | <font color='blue' size='+2'>Elektromágneses terek alapjai / Sztatikus mágneses és elektrosztatikus tér</font> | ||
+ | |- | ||
+ | | style="text-align: left; width: 36%;" | | ||
'''Oktató''' | '''Oktató''' | ||
− | * Marcsa Dániel (óraadó) | + | * [http://wiki.maxwell.sze.hu/index.php/Marcsa Marcsa Dániel] (óraadó) |
− | * Előadás: | + | * Előadás: - |
* Fogadóóra: egyeztetés alapján | * Fogadóóra: egyeztetés alapján | ||
− | | width | + | | style="text-align: left; width: 36%;" | |
'''További oktatók:''' | '''További oktatók:''' | ||
* - | * - | ||
* Fogadóóra: -. | * Fogadóóra: -. | ||
|} | |} | ||
− | |||
== Elektromágneses terek alapjai == | == Elektromágneses terek alapjai == | ||
<blockquote> | <blockquote> | ||
− | Az elektromágneses térelmélet adja az alapját több látszólag eltérő fizikai jelenségeknek. Ilyen jelenségek a hullámterjedés, a reflexió (visszaverődés), a fénytörés, a | + | Az elektromágneses térelmélet adja az alapját több látszólag eltérő fizikai jelenségeknek. Ilyen jelenségek a hullámterjedés, a reflexió (visszaverődés), a fénytörés, a diffrakció és a szóródás. A következőkben áttekintjük az elektromágneses terek alapjait. |
</blockquote> | </blockquote> | ||
=== [https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell-egyenletek] === | === [https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell-egyenletek] === | ||
Line 21: | Line 23: | ||
Az elektromágneses terek viselkedését matematikailag a Maxwell-egyenletek írják le. Ezeknek az egyenleteknek van differenciális és integrális alakja egyaránt. Az időben változó elektromágneses terek esetében a következő Maxwell-egyenletek lesznek érvényesek. | Az elektromágneses terek viselkedését matematikailag a Maxwell-egyenletek írják le. Ezeknek az egyenleteknek van differenciális és integrális alakja egyaránt. Az időben változó elektromágneses terek esetében a következő Maxwell-egyenletek lesznek érvényesek. | ||
==== Differenciális alak ==== | ==== Differenciális alak ==== | ||
− | {| width= | + | [[File:James Clerk Maxwell.png|250px|thumb|alt=James Clerk Maxwell (1831–1879).|James Clerk Maxwell (1831–1879).]] |
+ | {| width=70%, | ||
|- valign=top | |- valign=top | ||
− | | width= | + | | width=30%, style="text-align: left;" | |
− | <math>\nabla\times\vec{H}(\vec{r},t)=\vec{J}(\vec{r},t)+\frac{\partial D(\vec{r},t)}{\partial t}</math> | + | ::<math>\nabla\times\vec{H}(\vec{r},t)=\vec{J}(\vec{r},t)+\frac{\partial D(\vec{r},t)}{\partial t}</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | Ampere-törvény, | + | Ampere-féle gerjesztési törvény, |
− | |||
− | |||
|- valign=top, | |- valign=top, | ||
− | | width= | + | | width=30%, style="text-align: left;" | |
− | <math>\nabla\times\vec{E}(\vec{r},t)=-\frac{\partial \vec{B}(\vec{r},t)}{\partial t}</math> | + | ::<math>\nabla\times\vec{E}(\vec{r},t)=-\frac{\partial \vec{B}(\vec{r},t)}{\partial t}</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
Faraday-féle indukció törvény, | Faraday-féle indukció törvény, | ||
|- valign=top | |- valign=top | ||
− | | width= | + | | width=30%, style="text-align: left;" | |
− | <math>\nabla\cdot\vec{B}(\vec{r},t)=0</math> | + | ::<math>\nabla\cdot\vec{B}(\vec{r},t)=0</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | | + | Fluxusmegmaradás törvénye, |
|- valign=top | |- valign=top | ||
− | | width= | + | | width=30%, style="text-align: left;" | |
− | <math>\nabla\cdot\vec{D}(\vec{r},t)=\rho(\vec{r},t)</math> | + | ::<math>\nabla\cdot\vec{D}(\vec{r},t)=\rho(\vec{r},t)</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | | + | Gauss-törvény, |
|} | |} | ||
Line 60: | Line 61: | ||
::<math>\rho(\vec{r},t)</math> a térfogati töltséssűrűség [C/m<math>^3</math>]. | ::<math>\rho(\vec{r},t)</math> a térfogati töltséssűrűség [C/m<math>^3</math>]. | ||
− | A | + | A térváltozók függenek a tértől <math>\vec{r}</math> és az időtől <math>t</math>, azonban a rövidebb jelölés érdekében ezt a továbbiakban nem írjuk ki. |
A <math>\vec{J}</math> áramsűrűség és a <math>\rho</math> töltéssűrűség közötti összefüggést, az úgynevezett töltésmegmaradási tételt az első Maxwell-egyenlet (Ampere-törvény) jobb és bal oldalának divergenciájából kapjuk | A <math>\vec{J}</math> áramsűrűség és a <math>\rho</math> töltéssűrűség közötti összefüggést, az úgynevezett töltésmegmaradási tételt az első Maxwell-egyenlet (Ampere-törvény) jobb és bal oldalának divergenciájából kapjuk | ||
− | <math>\nabla\cdot(\nabla\times\vec{H})=\nabla\cdot\biggl(\vec{J}+\frac{\partial D}{\partial t}\biggr)=\nabla\cdot\vec{J}+\frac{\partial}{\partial t}\nabla\cdot\vec{D}</math>. | + | ::<math>\nabla\cdot(\nabla\times\vec{H})=\nabla\cdot\biggl(\vec{J}+\frac{\partial D}{\partial t}\biggr)=\nabla\cdot\vec{J}+\frac{\partial}{\partial t}\nabla\cdot\vec{D}</math>. |
A baloldal nullával egyenlő a következő azonosság értelmében <math>\nabla\cdot(\nabla\times\vec{v})\equiv 0</math>, minden <math>\vec{v}=\vec{v}(\vec{r},t)</math> vektor esetében. A jobb oldal második tagja átírható az elektromos Gauss-törvény felhasználásával. Végül a töltésmegmaradás egyenlet formájában a következő lesz | A baloldal nullával egyenlő a következő azonosság értelmében <math>\nabla\cdot(\nabla\times\vec{v})\equiv 0</math>, minden <math>\vec{v}=\vec{v}(\vec{r},t)</math> vektor esetében. A jobb oldal második tagja átírható az elektromos Gauss-törvény felhasználásával. Végül a töltésmegmaradás egyenlet formájában a következő lesz | ||
− | <math>\nabla\cdot\vec{J}+\frac{\partial \rho}{\partial t} = 0</math>. | + | ::<math>\nabla\cdot\vec{J}+\frac{\partial \rho}{\partial t} = 0</math>. |
− | Ez az egyenlet azt jelenti, hogy az áram és a töltés változása térben is időben | + | Ez az egyenlet azt jelenti, hogy az áram és a töltés változása térben is időben függenek egymástól. |
==== Integrális alak ==== | ==== Integrális alak ==== | ||
− | A Maxwell-egyenletek integrális alakja könnyen származtatható a differenciális alakból a Stokes-tétel és a Gauss-tétel | + | A Maxwell-egyenletek integrális alakja könnyen származtatható a differenciális alakból a Stokes-tétel és a Gauss-tétel felhasználásával. A Maxwell-egyenletek integrális alakban |
{| width=100%, | {| width=100%, | ||
|- valign=top | |- valign=top | ||
− | | width=40%, style="text-align: | + | | width=40%, style="text-align: left;" | |
− | <math>\oint_{\scriptstyle l}\vec{H}(\vec{r},t)\cdot\text{d}\vec{l}=\ | + | ::<math>\oint_{\scriptstyle l}\vec{H}(\vec{r},t)\cdot\text{d}\vec{l}=\int_{\scriptstyle A}\vec{J}(\vec{r},t)\cdot\text{d}\vec{A}+\frac{\partial}{\partial t}\int_{A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A}</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | Ampere-törvény, | + | Ampere-féle gerjesztési törvény, |
| width=40%, rowspan=4, style="text-align: center;" | | | width=40%, rowspan=4, style="text-align: center;" | | ||
|- valign=top, | |- valign=top, | ||
− | | width=40%, style="text-align: | + | | width=40%, style="text-align: left;" | |
− | <math>\oint_{l}\vec{E}(\vec{r},t)\cdot\text{d}\vec{l}=-\frac{\partial}{\partial t}\ | + | ::<math>\oint_{l}\vec{E}(\vec{r},t)\cdot\text{d}\vec{l}=-\frac{\partial}{\partial t}\int_{A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
Faraday-féle indukció törvény, | Faraday-féle indukció törvény, | ||
|- valign=top | |- valign=top | ||
− | | width=40%, style="text-align: | + | | width=40%, style="text-align: left;" | |
− | <math>\ | + | ::<math>\oint_{\scriptstyle A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}=0</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | | + | Fluxusmegmaradás törvénye, |
|- valign=top | |- valign=top | ||
− | | width=40%, style="text-align: | + | | width=40%, style="text-align: left;" | |
− | <math>\ | + | ::<math>\oint_{\scriptstyle A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A} = \int_{\scriptstyle V}\rho(\vec{r},t)\text{d}V</math> |
− | | width= | + | | width=40%, style="text-align: left;" | |
− | | + | Gauss-törvény. |
|} | |} | ||
Line 103: | Line 104: | ||
=== Konstitúciós relációk === | === Konstitúciós relációk === | ||
<blockquote> | <blockquote> | ||
+ | A térváltozók kapcsolatát leíró egyenletek a ''konstitúciós relációk''. A konstitúciós relációk általánosan nemlineárisak, vagyis a permeabilitás <math>\mu</math>, a vezetőképesség <math>\sigma</math> és a permittivitás <math>\varepsilon</math> függ a megfelelő térváltozótól, | ||
+ | |||
+ | ::<math>\mu=\mu(\vec{H},\vec{B})</math>, | ||
+ | |||
+ | ::<math>\sigma=\sigma(\vec{E},\vec{J})</math>, | ||
+ | |||
+ | ::<math>\varepsilon=\varepsilon(\vec{E},\vec{D})</math>. | ||
+ | |||
+ | A fenti egyenletek más alakban | ||
+ | |||
+ | ::<math>\vec{B}=\mathfrak{B}(\vec{H})</math>, | ||
+ | |||
+ | ::<math>\vec{J}=\mathfrak{J}(\vec{E})</math>, | ||
+ | |||
+ | ::<math>\vec{D}=\mathfrak{D}(\vec{E})</math>, | ||
+ | |||
+ | ahol <math>\mathfrak{B}(\cdot)</math>, <math>\mathfrak{J}(\cdot)</math> és <math>\mathfrak{D}(\cdot)</math> operátorok. | ||
+ | |||
+ | Ha az anyag tulajdonsága független a tértől <math>\vec{r}</math>, akkor ''homogénnek'' nevezzük, máskülönben ''inhomogén'', <math>\mu=\mu(\vec{r})</math>, <math>\sigma=\sigma(\vec{r})</math>, <math>\varepsilon=\varepsilon(\vec{r})</math>. A konstitúciós reláció függhet a gerjesztés frekvenciájától is, <math>\mu=\mu(f)</math>, <math>\sigma=\sigma(f)</math>, <math>\varepsilon=\varepsilon(f)</math>. Ha a konstitúciós reláció paraméterei függenek a térváltozók irányától, akkor az anyag ''anizotrop'', máskülönben ''izotrop''. Anizotrop esetben a permeabilitás, a vezetőképesség és a permittivitás tenzor, <math>\vec{B}=[\mu]\vec{H}</math>, <math>\vec{J}=[\sigma]\vec{E}</math>, <math>\vec{D}=[\varepsilon]\vec{E}</math>, mint például | ||
+ | |||
+ | ::<math>[\mu]=\begin{bmatrix} | ||
+ | \mu_{xx} & \mu_{xy} & \mu_{xz} \\ | ||
+ | \mu_{yx} & \mu_{yy} & \mu_{yz} \\ | ||
+ | \mu_{zx} & \mu_{zy} & \mu_{zz} | ||
+ | \end{bmatrix}</math>. | ||
+ | |||
+ | A legáltalánosabb esetben, a konstitúciós relációk függenek az összes fentebb említett változótól, például | ||
+ | ::<math>\vec{B}=\mathfrak{B}\{\vec{H},\vec{r},f\}</math>. | ||
</blockquote> | </blockquote> | ||
=== Határ- és peremfeltételek === | === Határ- és peremfeltételek === | ||
<blockquote> | <blockquote> | ||
+ | A Maxwell-egyenletek a konstitúciós relációkkal együtt adják egy elektromágneses feladat megoldását. De ahhoz, hogy egyértelmű megoldást kapjunk, peremfeltételeket kell alkalmaznunk a feladat külső határára. Emellett, olyan feladatnál, ahol eltérő tulajdonsággal rendelkező anyag tölti ki a teret (<math>\mu_{1}; \mu_{2}; \varepsilon_{1}; \varepsilon_{2}; \sigma_{1}; \sigma_{2}</math>), a térváltozóknak eleget kell tenniük a folytonossági feltételeknek a két anyag közötti határon. | ||
+ | ==== Határfeltételek ==== | ||
+ | [[File:Interface.PNG|400px|thumb|left|alt=Az elektromos és mágneses tér két anyag közötti határon. |Az elektromos és mágneses tér két anyag közötti határon.]] | ||
+ | Két anyag közötti határfeltételen az elektromos térerősség tangenciálisa komponensére írunk elő feltételt, | ||
+ | ::<math>\vec{n}\times\left(\vec{E}_{2} - \vec{E}_{1}\right) = \vec{0}</math>. | ||
+ | |||
+ | A mágneses térerősség vektor tangenciális összetevője a <math>\vec{K}</math> felületi áramsűrűséggel van összefüggésben, | ||
+ | |||
+ | ::<math>\vec{n}\times\left(\vec{H}_{2} - \vec{H}_{1}\right) = \vec{K}</math>. | ||
+ | |||
+ | A <math>\vec{K}</math> felületi áramsűrűség a <math>\vec{n}</math> normális irányú egységvektorra merőlegesen (tangenciálisan) folyik a felületen. Ha nincs felületi áramsűrűség a két anyag határán, a mágneses térerősség tangenciális irányú komponensének folytonosnak kell lennie, | ||
+ | |||
+ | ::<math>\vec{n}\times\left(\vec{H}_{2} - \vec{H}_{1}\right) = \vec{0}</math>. | ||
+ | |||
+ | Két különböző dielektrikum határán a <math>\vec{D}</math> elektromos fluxussűrűség normális irányú komponense akkor lesz folytonos, ha <math>\rho_{\scriptstyle A} = 0</math>, vagyis nincs felületi töltéssűrűség a határfelületen, | ||
+ | |||
+ | ::<math>\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) = 0</math>, | ||
+ | |||
+ | máskülönben a fluxussűrűség normális irányú komponense ugorhat a határfelületen, | ||
+ | |||
+ | ::<math>\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) = \rho_{\scriptstyle A}</math>. | ||
+ | |||
+ | Különböző mágneses anyagok találkozásának határán a <math>\vec{B}</math> mágneses fluxussűrűség normális irányú komponensének folytonosnak kell lennie, | ||
+ | |||
+ | ::<math>\vec{n}\cdot\left(\vec{B}_{2} - \vec{B}_{1}\right) = 0</math>. | ||
+ | |||
+ | A töltésmegmaradás törvényének értelmében örvényáramú esetben, a <math>\vec{J}</math> vezetési áram normális irányú komponense folytonos, | ||
+ | |||
+ | ::<math>\vec{n}\cdot\left(\vec{J}_{2} - \vec{J}_{1}\right) = 0</math>, | ||
+ | |||
+ | vagy általános alakban | ||
+ | |||
+ | ::<math>\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) + \vec{n}\cdot\left(\frac{\partial \vec{D}_{2}}{\partial t}-\frac{\partial \vec{D}_{1}}{\partial t}\right) = 0</math>, | ||
+ | |||
+ | kell teljesüljön az anyagok közötti határon. | ||
+ | |||
+ | ==== Peremfeltételek ==== | ||
+ | A vizsgált feladat külső peremén peremfeltételeknek kell teljesülniük, hogy a feladat egyértelmű megoldását kapjuk. Ezeket a kényszerek ''Dirichlet típusú'' és ''Neumann típusú'', illetve ''homogén'' és ''inhomogén'' peremfeltételek lehetnek. Ezeket a feltételeket a Laplace-egyenlet megoldásán keresztül mutatom be | ||
+ | |||
+ | ::<math>\nabla\cdot\varepsilon\nabla V=0</math>, | ||
+ | |||
+ | ahol a <math>V</math> függvény a teret vagy a potenciált jelenti. A ''homogén Dirichlet peremfeltétel'' a következőt jelenti | ||
+ | |||
+ | ::<math>V(\vec{r})=0</math>, | ||
+ | |||
+ | a feladat külső felületén. Tökéletes vezető esetében ez a feltétel <math>E_{\text{tan}}=0</math> lesz. | ||
+ | |||
+ | A ''homogén Neumann peremfeltételt'' a következőképpen adjuk meg | ||
+ | |||
+ | ::<math>\frac{\partial V(\vec{r})}{\partial n}=\nabla V \cdot \vec{n} = 0</math>, | ||
+ | |||
+ | a feladat külső felületére, vagyis <math>V</math> a külső felület normális irányú komponens szerint vett deriváltja nulla kell legyen a felületen. Ez a feltétel tökéletes vezető esetében azt jelenti, hogy <math>\partial H/\partial n = 0</math>, mivel a <math>H</math> normális irányra vett deriváltja arányos az elektromos térerősség tangenciális irányú összetevőjével. Ez előzőek alapján, felírhatjuk a peremfeltételek ''inhomogén'' változatát, amit akkor kapunk, ha a jobb oldal nem zérus, például | ||
+ | |||
+ | ::<math>V(\vec{r})=\text{konstans}</math>; | ||
+ | |||
+ | ::<math>\frac{\partial V(\vec{r})}{\partial n}=\nabla V \cdot \vec{n} = \text{konstans}</math>. | ||
</blockquote> | </blockquote> | ||
== Elektromágneses terek - Sztatikus terek == | == Elektromágneses terek - Sztatikus terek == | ||
− | + | A legegyszerűbb esetben a térváltozók idő szerinti változását elhanyagoljuk, azaz <math>\partial/\partial t = 0</math>. Az elektrosztatikus teret általában valamilyen nyugvó töltéssűrűség hozza létre, miközben a sztatikus mágneses teret az állandó sebességgel mozgó töltések (egyenáram) hozzák létre. | |
=== Sztatikus mágneses tér === | === Sztatikus mágneses tér === | ||
<blockquote> | <blockquote> | ||
+ | A sztatikus mágneses tér alapösszefüggései az Ampere-féle gerjesztési törvény | ||
+ | |||
+ | ::<math>\nabla\times\vec{H}(\vec{r},t)=\vec{J}(\vec{r},t)\qquad</math> vagy <math>\qquad\oint_{\scriptstyle l}\vec{H}(\vec{r},t)\cdot\text{d}\vec{l}=\int_{\scriptstyle A}\vec{J}(\vec{r},t)\cdot\text{d}\vec{A}</math>, | ||
+ | |||
+ | ami összefügg a Biot-Savart törvénnyel, és a mágneses fluxussűrűség megmaradásának törvénye (vagy nevezhetjük mágneses Gauss törvénynek) | ||
+ | |||
+ | ::<math>\nabla\cdot\vec{B} = 0\qquad</math> vagy <math>\qquad\oint_{\scriptstyle A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}=0</math>. | ||
+ | |||
+ | A <math>\vec{B}</math> és <math>\vec{H}</math> vektorterek között a kapcsolatot a <math>\mu = \mu_{0}\mu_{r}</math> (H/m) permeabilitás teremti meg a következőképpen <math>\vec{B}=\mu\vec{H}</math>, ahol <math>\mu_{0} = 4\pi\cdot10^{-7}\tfrac{\text{H}}{\text{m}}</math> a vákuum permeabilitása, és <math>\mu_{r}</math> a relatív permeabilitás. | ||
+ | |||
+ | Az <math>\vec{A}</math> mágneses vektorpotenciált bevezetve (Wb/m), a mágneses térerősséget kifejezhetjük, mint | ||
+ | |||
+ | ::<math>\vec{B}=\nabla\times\vec{A}</math>, | ||
+ | |||
+ | a <math>\nabla\cdot\left(\nabla\times\vec{v}\right)\equiv\vec{0}</math> azonosság miatt. | ||
+ | |||
+ | Az Ampere-féle gerjesztési törvény, a konstitúciós reláció és a <math>\vec{B}</math> összefüggéséből a következő egyenletet kapjuk | ||
+ | |||
+ | ::<math>\nabla\times\left(\frac{1}{\mu}\nabla\times\vec{A}\right)=\vec{J}</math>. | ||
</blockquote> | </blockquote> | ||
+ | |||
=== Elektrosztatikus tér === | === Elektrosztatikus tér === | ||
<blockquote> | <blockquote> | ||
+ | Az elektrosztatikus tér két alapösszefüggése a Gauss törvény, | ||
+ | |||
+ | ::<math>\nabla\cdot\vec{D}=\rho_{\scriptstyle A}\qquad</math> vagy <math>\qquad\oint_{\scriptstyle A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A} = \int_{\scriptstyle V}\rho(\vec{r},t)\text{d}V</math>, | ||
+ | |||
+ | ami közvetlen következménye a Coulomb törvénynek, és a következő összefüggés, | ||
+ | |||
+ | ::<math>\nabla\times\vec{E}=\vec{0}\qquad</math> vagy <math>\qquad\oint_{l}\vec{E}(\vec{r},t)\cdot\text{d}\vec{l}=\vec{0}</math>, | ||
+ | |||
+ | amelyet a Faraday-féle indukciótörvényből kapunk. | ||
+ | |||
+ | A <math>\vec{D}</math> és az <math>\vec{E}</math> vektortér között a kapcsolatot a <math>\vec{D}=\varepsilon\vec{E}</math> összefüggés adja meg, ahol <math>\varepsilon=\varepsilon_{0}\varepsilon_{r}</math> a permittivitás (F/m), az <math>\varepsilon_{0} = 8.854\cdot10^{-12}\tfrac{\text{F}}{\text{m}}</math> a vákuum permittivitás és az <math>\varepsilon_{r}</math> a relatív permittivitás. Az <math>\vec{E}</math> elektromos térerősség kifejezhető a <math>V</math> ''elektromos skalárpotenciállal'' (V) | ||
+ | |||
+ | ::<math>\vec{E}=-\nabla V\qquad</math> vagy <math>\qquad V = -\int\vec{E}\cdot\text{d}\vec{l}</math>, | ||
+ | |||
+ | a <math>\nabla\times\left(\nabla V\right)\equiv\vec{0}</math> összefüggés értelmében. | ||
+ | |||
+ | A Gauss törvény, a konstitúciós reláció és az <math>\vec{E}</math> térerősség kifejezésének felhasználásával a ''Poisson-egyenletet'' kapjuk | ||
+ | |||
+ | ::<math>\nabla\cdot\varepsilon\nabla V=-\rho_{\scriptstyle A}</math>, | ||
+ | |||
+ | vagy, ha <math>\rho_{\scriptstyle A} = 0</math>, akkor a ''Laplace-egyenletet'' kapjuk | ||
+ | ::<math>\nabla\cdot\varepsilon\nabla V=0</math>. | ||
</blockquote> | </blockquote> | ||
== Irodalomjegyzék == | == Irodalomjegyzék == | ||
{{reflist}} | {{reflist}} |
Latest revision as of 12:44, 13 November 2021
Elektromágneses terek alapjai / Sztatikus mágneses és elektrosztatikus tér | |
Oktató
|
További oktatók:
|
Contents
Elektromágneses terek alapjai
Az elektromágneses térelmélet adja az alapját több látszólag eltérő fizikai jelenségeknek. Ilyen jelenségek a hullámterjedés, a reflexió (visszaverődés), a fénytörés, a diffrakció és a szóródás. A következőkben áttekintjük az elektromágneses terek alapjait.
Maxwell-egyenletek
Az elektromágneses terek viselkedését matematikailag a Maxwell-egyenletek írják le. Ezeknek az egyenleteknek van differenciális és integrális alakja egyaránt. Az időben változó elektromágneses terek esetében a következő Maxwell-egyenletek lesznek érvényesek.
Differenciális alak
- [math]\nabla\times\vec{H}(\vec{r},t)=\vec{J}(\vec{r},t)+\frac{\partial D(\vec{r},t)}{\partial t}[/math]
Ampere-féle gerjesztési törvény,
- [math]\nabla\times\vec{E}(\vec{r},t)=-\frac{\partial \vec{B}(\vec{r},t)}{\partial t}[/math]
Faraday-féle indukció törvény,
- [math]\nabla\cdot\vec{B}(\vec{r},t)=0[/math]
Fluxusmegmaradás törvénye,
- [math]\nabla\cdot\vec{D}(\vec{r},t)=\rho(\vec{r},t)[/math]
Gauss-törvény,
ahol:
- [math]\vec{H}(\vec{r},t)[/math] a mágneses térerősség [A/m];
- [math]\vec{E}(\vec{r},t)[/math] az elektromos térerősség [V/m];
- [math]\vec{B}(\vec{r},t)[/math] a mágneses fluxussűrűség [Wb/m[math]^2[/math]];
- [math]\vec{D}(\vec{r},t)[/math] az elektromos fluxussűrűség [C/m[math]^2[/math]];
- [math]\vec{J}(\vec{r},t)[/math] az áramsűrűség [A/m[math]^2[/math]];
- [math]\rho(\vec{r},t)[/math] a térfogati töltséssűrűség [C/m[math]^3[/math]].
A térváltozók függenek a tértől [math]\vec{r}[/math] és az időtől [math]t[/math], azonban a rövidebb jelölés érdekében ezt a továbbiakban nem írjuk ki.
A [math]\vec{J}[/math] áramsűrűség és a [math]\rho[/math] töltéssűrűség közötti összefüggést, az úgynevezett töltésmegmaradási tételt az első Maxwell-egyenlet (Ampere-törvény) jobb és bal oldalának divergenciájából kapjuk
- [math]\nabla\cdot(\nabla\times\vec{H})=\nabla\cdot\biggl(\vec{J}+\frac{\partial D}{\partial t}\biggr)=\nabla\cdot\vec{J}+\frac{\partial}{\partial t}\nabla\cdot\vec{D}[/math].
A baloldal nullával egyenlő a következő azonosság értelmében [math]\nabla\cdot(\nabla\times\vec{v})\equiv 0[/math], minden [math]\vec{v}=\vec{v}(\vec{r},t)[/math] vektor esetében. A jobb oldal második tagja átírható az elektromos Gauss-törvény felhasználásával. Végül a töltésmegmaradás egyenlet formájában a következő lesz
- [math]\nabla\cdot\vec{J}+\frac{\partial \rho}{\partial t} = 0[/math].
Ez az egyenlet azt jelenti, hogy az áram és a töltés változása térben is időben függenek egymástól.
Integrális alak
A Maxwell-egyenletek integrális alakja könnyen származtatható a differenciális alakból a Stokes-tétel és a Gauss-tétel felhasználásával. A Maxwell-egyenletek integrális alakban
- [math]\oint_{\scriptstyle l}\vec{H}(\vec{r},t)\cdot\text{d}\vec{l}=\int_{\scriptstyle A}\vec{J}(\vec{r},t)\cdot\text{d}\vec{A}+\frac{\partial}{\partial t}\int_{A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A}[/math]
Ampere-féle gerjesztési törvény,
- [math]\oint_{l}\vec{E}(\vec{r},t)\cdot\text{d}\vec{l}=-\frac{\partial}{\partial t}\int_{A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}[/math]
Faraday-féle indukció törvény,
- [math]\oint_{\scriptstyle A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}=0[/math]
Fluxusmegmaradás törvénye,
- [math]\oint_{\scriptstyle A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A} = \int_{\scriptstyle V}\rho(\vec{r},t)\text{d}V[/math]
Gauss-törvény.
A Maxwell-egyenletek egyértelműen leírják a teret és érvényesek helytől, időtől és anyagtól függetlenül.
Konstitúciós relációk
A térváltozók kapcsolatát leíró egyenletek a konstitúciós relációk. A konstitúciós relációk általánosan nemlineárisak, vagyis a permeabilitás [math]\mu[/math], a vezetőképesség [math]\sigma[/math] és a permittivitás [math]\varepsilon[/math] függ a megfelelő térváltozótól,
- [math]\mu=\mu(\vec{H},\vec{B})[/math],
- [math]\sigma=\sigma(\vec{E},\vec{J})[/math],
- [math]\varepsilon=\varepsilon(\vec{E},\vec{D})[/math].
A fenti egyenletek más alakban
- [math]\vec{B}=\mathfrak{B}(\vec{H})[/math],
- [math]\vec{J}=\mathfrak{J}(\vec{E})[/math],
- [math]\vec{D}=\mathfrak{D}(\vec{E})[/math],
ahol [math]\mathfrak{B}(\cdot)[/math], [math]\mathfrak{J}(\cdot)[/math] és [math]\mathfrak{D}(\cdot)[/math] operátorok.
Ha az anyag tulajdonsága független a tértől [math]\vec{r}[/math], akkor homogénnek nevezzük, máskülönben inhomogén, [math]\mu=\mu(\vec{r})[/math], [math]\sigma=\sigma(\vec{r})[/math], [math]\varepsilon=\varepsilon(\vec{r})[/math]. A konstitúciós reláció függhet a gerjesztés frekvenciájától is, [math]\mu=\mu(f)[/math], [math]\sigma=\sigma(f)[/math], [math]\varepsilon=\varepsilon(f)[/math]. Ha a konstitúciós reláció paraméterei függenek a térváltozók irányától, akkor az anyag anizotrop, máskülönben izotrop. Anizotrop esetben a permeabilitás, a vezetőképesség és a permittivitás tenzor, [math]\vec{B}=[\mu]\vec{H}[/math], [math]\vec{J}=[\sigma]\vec{E}[/math], [math]\vec{D}=[\varepsilon]\vec{E}[/math], mint például
- [math][\mu]=\begin{bmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{bmatrix}[/math].
A legáltalánosabb esetben, a konstitúciós relációk függenek az összes fentebb említett változótól, például
- [math]\vec{B}=\mathfrak{B}\{\vec{H},\vec{r},f\}[/math].
Határ- és peremfeltételek
A Maxwell-egyenletek a konstitúciós relációkkal együtt adják egy elektromágneses feladat megoldását. De ahhoz, hogy egyértelmű megoldást kapjunk, peremfeltételeket kell alkalmaznunk a feladat külső határára. Emellett, olyan feladatnál, ahol eltérő tulajdonsággal rendelkező anyag tölti ki a teret ([math]\mu_{1}; \mu_{2}; \varepsilon_{1}; \varepsilon_{2}; \sigma_{1}; \sigma_{2}[/math]), a térváltozóknak eleget kell tenniük a folytonossági feltételeknek a két anyag közötti határon.
Határfeltételek
Két anyag közötti határfeltételen az elektromos térerősség tangenciálisa komponensére írunk elő feltételt,
- [math]\vec{n}\times\left(\vec{E}_{2} - \vec{E}_{1}\right) = \vec{0}[/math].
A mágneses térerősség vektor tangenciális összetevője a [math]\vec{K}[/math] felületi áramsűrűséggel van összefüggésben,
- [math]\vec{n}\times\left(\vec{H}_{2} - \vec{H}_{1}\right) = \vec{K}[/math].
A [math]\vec{K}[/math] felületi áramsűrűség a [math]\vec{n}[/math] normális irányú egységvektorra merőlegesen (tangenciálisan) folyik a felületen. Ha nincs felületi áramsűrűség a két anyag határán, a mágneses térerősség tangenciális irányú komponensének folytonosnak kell lennie,
- [math]\vec{n}\times\left(\vec{H}_{2} - \vec{H}_{1}\right) = \vec{0}[/math].
Két különböző dielektrikum határán a [math]\vec{D}[/math] elektromos fluxussűrűség normális irányú komponense akkor lesz folytonos, ha [math]\rho_{\scriptstyle A} = 0[/math], vagyis nincs felületi töltéssűrűség a határfelületen,
- [math]\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) = 0[/math],
máskülönben a fluxussűrűség normális irányú komponense ugorhat a határfelületen,
- [math]\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) = \rho_{\scriptstyle A}[/math].
Különböző mágneses anyagok találkozásának határán a [math]\vec{B}[/math] mágneses fluxussűrűség normális irányú komponensének folytonosnak kell lennie,
- [math]\vec{n}\cdot\left(\vec{B}_{2} - \vec{B}_{1}\right) = 0[/math].
A töltésmegmaradás törvényének értelmében örvényáramú esetben, a [math]\vec{J}[/math] vezetési áram normális irányú komponense folytonos,
- [math]\vec{n}\cdot\left(\vec{J}_{2} - \vec{J}_{1}\right) = 0[/math],
vagy általános alakban
- [math]\vec{n}\cdot\left(\vec{D}_{2} - \vec{D}_{1}\right) + \vec{n}\cdot\left(\frac{\partial \vec{D}_{2}}{\partial t}-\frac{\partial \vec{D}_{1}}{\partial t}\right) = 0[/math],
kell teljesüljön az anyagok közötti határon.
Peremfeltételek
A vizsgált feladat külső peremén peremfeltételeknek kell teljesülniük, hogy a feladat egyértelmű megoldását kapjuk. Ezeket a kényszerek Dirichlet típusú és Neumann típusú, illetve homogén és inhomogén peremfeltételek lehetnek. Ezeket a feltételeket a Laplace-egyenlet megoldásán keresztül mutatom be
- [math]\nabla\cdot\varepsilon\nabla V=0[/math],
ahol a [math]V[/math] függvény a teret vagy a potenciált jelenti. A homogén Dirichlet peremfeltétel a következőt jelenti
- [math]V(\vec{r})=0[/math],
a feladat külső felületén. Tökéletes vezető esetében ez a feltétel [math]E_{\text{tan}}=0[/math] lesz.
A homogén Neumann peremfeltételt a következőképpen adjuk meg
- [math]\frac{\partial V(\vec{r})}{\partial n}=\nabla V \cdot \vec{n} = 0[/math],
a feladat külső felületére, vagyis [math]V[/math] a külső felület normális irányú komponens szerint vett deriváltja nulla kell legyen a felületen. Ez a feltétel tökéletes vezető esetében azt jelenti, hogy [math]\partial H/\partial n = 0[/math], mivel a [math]H[/math] normális irányra vett deriváltja arányos az elektromos térerősség tangenciális irányú összetevőjével. Ez előzőek alapján, felírhatjuk a peremfeltételek inhomogén változatát, amit akkor kapunk, ha a jobb oldal nem zérus, például
- [math]V(\vec{r})=\text{konstans}[/math];
- [math]\frac{\partial V(\vec{r})}{\partial n}=\nabla V \cdot \vec{n} = \text{konstans}[/math].
Elektromágneses terek - Sztatikus terek
A legegyszerűbb esetben a térváltozók idő szerinti változását elhanyagoljuk, azaz [math]\partial/\partial t = 0[/math]. Az elektrosztatikus teret általában valamilyen nyugvó töltéssűrűség hozza létre, miközben a sztatikus mágneses teret az állandó sebességgel mozgó töltések (egyenáram) hozzák létre.
Sztatikus mágneses tér
A sztatikus mágneses tér alapösszefüggései az Ampere-féle gerjesztési törvény
- [math]\nabla\times\vec{H}(\vec{r},t)=\vec{J}(\vec{r},t)\qquad[/math] vagy [math]\qquad\oint_{\scriptstyle l}\vec{H}(\vec{r},t)\cdot\text{d}\vec{l}=\int_{\scriptstyle A}\vec{J}(\vec{r},t)\cdot\text{d}\vec{A}[/math],
ami összefügg a Biot-Savart törvénnyel, és a mágneses fluxussűrűség megmaradásának törvénye (vagy nevezhetjük mágneses Gauss törvénynek)
- [math]\nabla\cdot\vec{B} = 0\qquad[/math] vagy [math]\qquad\oint_{\scriptstyle A}\vec{B}(\vec{r},t)\cdot\text{d}\vec{A}=0[/math].
A [math]\vec{B}[/math] és [math]\vec{H}[/math] vektorterek között a kapcsolatot a [math]\mu = \mu_{0}\mu_{r}[/math] (H/m) permeabilitás teremti meg a következőképpen [math]\vec{B}=\mu\vec{H}[/math], ahol [math]\mu_{0} = 4\pi\cdot10^{-7}\tfrac{\text{H}}{\text{m}}[/math] a vákuum permeabilitása, és [math]\mu_{r}[/math] a relatív permeabilitás.
Az [math]\vec{A}[/math] mágneses vektorpotenciált bevezetve (Wb/m), a mágneses térerősséget kifejezhetjük, mint
- [math]\vec{B}=\nabla\times\vec{A}[/math],
a [math]\nabla\cdot\left(\nabla\times\vec{v}\right)\equiv\vec{0}[/math] azonosság miatt.
Az Ampere-féle gerjesztési törvény, a konstitúciós reláció és a [math]\vec{B}[/math] összefüggéséből a következő egyenletet kapjuk
- [math]\nabla\times\left(\frac{1}{\mu}\nabla\times\vec{A}\right)=\vec{J}[/math].
Elektrosztatikus tér
Az elektrosztatikus tér két alapösszefüggése a Gauss törvény,
- [math]\nabla\cdot\vec{D}=\rho_{\scriptstyle A}\qquad[/math] vagy [math]\qquad\oint_{\scriptstyle A}\vec{D}(\vec{r},t)\cdot\text{d}\vec{A} = \int_{\scriptstyle V}\rho(\vec{r},t)\text{d}V[/math],
ami közvetlen következménye a Coulomb törvénynek, és a következő összefüggés,
- [math]\nabla\times\vec{E}=\vec{0}\qquad[/math] vagy [math]\qquad\oint_{l}\vec{E}(\vec{r},t)\cdot\text{d}\vec{l}=\vec{0}[/math],
amelyet a Faraday-féle indukciótörvényből kapunk.
A [math]\vec{D}[/math] és az [math]\vec{E}[/math] vektortér között a kapcsolatot a [math]\vec{D}=\varepsilon\vec{E}[/math] összefüggés adja meg, ahol [math]\varepsilon=\varepsilon_{0}\varepsilon_{r}[/math] a permittivitás (F/m), az [math]\varepsilon_{0} = 8.854\cdot10^{-12}\tfrac{\text{F}}{\text{m}}[/math] a vákuum permittivitás és az [math]\varepsilon_{r}[/math] a relatív permittivitás. Az [math]\vec{E}[/math] elektromos térerősség kifejezhető a [math]V[/math] elektromos skalárpotenciállal (V)
- [math]\vec{E}=-\nabla V\qquad[/math] vagy [math]\qquad V = -\int\vec{E}\cdot\text{d}\vec{l}[/math],
a [math]\nabla\times\left(\nabla V\right)\equiv\vec{0}[/math] összefüggés értelmében.
A Gauss törvény, a konstitúciós reláció és az [math]\vec{E}[/math] térerősség kifejezésének felhasználásával a Poisson-egyenletet kapjuk
- [math]\nabla\cdot\varepsilon\nabla V=-\rho_{\scriptstyle A}[/math],
vagy, ha [math]\rho_{\scriptstyle A} = 0[/math], akkor a Laplace-egyenletet kapjuk
- [math]\nabla\cdot\varepsilon\nabla V=0[/math].