Difference between revisions of "Electrical Machines"

From Maxwell
Jump to: navigation, search
(Villamos gépek (GKNB_AUTM020, GKLB_AUTM020))
(Villamos gépek (GKNB_AUTM020, GKLB_AUTM020))
Line 37: Line 37:
 
| '''I.'''
 
| '''I.'''
 
| Bevezető
 
| Bevezető
| [http://maxwell.sze.hu/~marcsa/VillamosGepekMukodese/VillamosGepekMukodese_lap.html|Bevezető]
+
| [http://maxwell.sze.hu/~marcsa/VillamosGepekMukodese/VillamosGepekMukodese_lap.html Bevezető]
| [http://maxwell.sze.hu/~marcsa/VillamosGepekMukodese/VillamosGepekMukodese_lap.html|Házi feladat]
+
| [http://maxwell.sze.hu/~marcsa/VillamosGepekMukodese/VillamosGepekMukodese_lap.html Házi feladat]
  
 
|- valign=top
 
|- valign=top

Revision as of 20:56, 23 December 2019

Villamos gépek

Oktató

  • Marcsa Dániel (óraadó)
  • Előadás: -
  • Fogadóóra: egyeztetés alapján

További oktatók:

  • -
  • Fogadóóra: -.

A kurzus leírása

Ezen az oldalon nem egy kurzushoz, hanem a Széchenyi István Egyetemen oktatott villamos gépekkel kapcsolatos alapkézéses és szakképzéses tárgyaimhoz tartozó előadások anyagai találhatóak.

Angol és magyar nyelven is sok kiválló szakkönyv, jegyzet létezik, ami részletesen taglalja a villamos gépek működését. Ezekre építve a célom az volt az előadásokban, hogy minél szemléletesebben bemutassam a gépekben lejátszodó jelenségeket a működésük megértéséhez.

Fontos megjegyezni, hogy nem egy jegyzetet készítettem, így sok esetben a megértéshez az előadáson elhangzottak is szükségesek. Emellett pedig angolul vannak az előadások, hogy a hallgatók megismerkedjenek a kurzusok során a témához tartozó angol elnevezésekkel, kifejezésekkel.

Villamos gépek (GKNB_AUTM020, GKLB_AUTM020)

A táblázatban kurzushoz tartozó előadások találhatóak időrendi sorrendben.

Hét Téma Előadás Házi feladat
I. Bevezető Bevezető Házi feladat
II.

7 Oct
9 Oct
11 Oct

Linear I/O systems
  • Differential and difference equations (with inputs and outputs, including disturbances and noise)
  • Linearized system dynamics
  • Stability of equilibrium points, I/O stability
  • Convolution equation, impulse response
  • Opt: FBS2e Ch 3; DFT Sec 2.6
  • Rec: FBS2e Sec 5.1‑5.3, 6.1‑6.3; FBS2s Ch 2
  • Adv: Sontag Sec C.4, 2.6
Template:Cds131 fa19 pdf

Out: 9 Oct
Due: 16 Oct
Template:Cds131 fa19 pdf (Caltech only)

III.

14 Oct
16 Oct
18 Oct*

Reachability
  • Definitions (reachability, stabilizability)
  • Characterization and rank tests (Grammian, PBH)
  • Decomposition into reachable/unreachable subspaces
  • Eigenvalue placement theorem
  • Rec: FBS2e Sec 7.1, 7.2; FBS2s Ch 3
  • Adv: FBS2e Sec 7.3; Sontag Sec 3.1‑3.3, 3.5
Template:Cds131 fa19 pdf

Out: 16 Oct
Due: 23 Oct
Template:Cds131 fa19 pdf (Caltech only)

IV.

21 Oct
23 Oct
25 Oct*

State feedback
  • Optimization and optimal control
  • Linear quadratic regulator (including Ricatti equation)
  • Opt: FBS2e Sec 7.5
  • Rec: FBS2s Ch 4 (= OBC Ch 2)
  • Adv: Sontag Sec 8.1‑8.3, 9.1, 9.2
Template:Cds131 fa19 pdf

Out: 23 Oct
Due: 30 Oct
Template:Cds131 fa19 pdf (Caltech only)

V.

28 Oct
30 Oct*
1 Nov

Observability and state estimation
  • Definitions (observability, observable subspace)
  • Characterization and rank tests
  • Kalman decomposition
  • Linear observers (full-state)
  • Rec: FBS2e Sec 8.1-8.3; FBS2s Ch 5
  • Adv: Sontag Sec 6.1‑6.3, 7.1
Template:Cds131 fa19 pdf

Out: 30 Oct
Due: 6 Nov
Template:Cds131 fa19 pdf (Caltech only)

Week 6

4 Nov
6 Nov
8 Nov*

Frequency domain analysis
  • Internal stability
  • Tracking, disturbance rejection
  • I/O performance
  • Opt: FBS2e Sec 9.1, 9.2 and 9.5, Sec 10.1-10.2, Sec 12.1-12.2
  • Rec: DFT Ch 3
  • Adv: Lewis Ch 5-8
Template:Cds131 fa19 pdf

Out: 6 Nov
Due: 13 Nov
Template:Cds131 fa19 pdf (Caltech only)

Week 7

11 Nov
13 Nov
15 Nov*

Uncertainty and robustness
  • Types of uncertainty: parametric, operator, disturbances/noise
  • Robust stability and robust performance
  • Opt: FBS2e Sec 10.3, Sec 13.1-13.3
  • Rec: DFT Ch 4
Template:Cds131 fa19 pdf

Out: 13 Nov
Due: 20 Nov
Template:Cds131 fa19 pdf (Caltech only)

Week 8

18 Nov
20 Nov*
22 Nov

Stabilization
  • Coprime factorization
  • Youla parameterization
  • Strong stabilization
  • Simultaneous stabilization, robust stabilization (gap metric) [if time]
  • Rec: DFT Ch 5
Template:Cds131 fa19 pdf

Out: 20 Nov
Due: 27 Nov
Template:Cds131 fa19 pdf (Caltech only)

Week 9

25 Nov
27 Nov
29 Nov
2 Dec
4 Dec*

Fundamental limits
  • Algebraic limits
  • Bode's integral formula
  • Maximum modulus principle
  • Opt: FBS2e Sec 14.1, 14.2. 14.4
  • Rec: DFT Ch 6
  • Adv: Lewis, Ch 9
Template:Cds131 fa19 pdf

Out: 27 Nov
Due: 6 Dec (Fri)
Office hours:

  • 3 Dec (Tue), 4p-5p
  • 5 Dec (Thu), 4p-5p, 314 ANB

Template:Cds131 fa19 pdf (Caltech only)

Week 10

6 Dec

Review for final Final

Out: 6 Dec
Due: 13 Dec, 2 pm
Office hours:

  • 9 Dec (Mon), 4p-5p
  • 10 Dec (Tue), 4p‑5p

Template:Cds131 fa19 pdf (Caltech only)

Grading

The final grade will be based on homework sets, a midterm exam, and a final exam:

  • Homework (70%): Homework sets will be handed out weekly and due on Wednesdays by 2 pm either in class or in the labeled box across from 107 Steele Lab. Each student is allowed up to two extensions of no more than 2 days each over the course of the term. Homework turned in after Friday at 2 pm or after the two extensions are exhausted will not be accepted without a note from the health center or the Dean. MATLAB/Python code and SIMULINK/Modelica diagrams are considered part of your solution and should be printed and turned in with the problem set (whether the problem asks for it or not).
The lowest homework set grade will be dropped when computing your final grade.
  • Final exam (30%): The final exam will be handed out on the last day of class (4 Dec) and due at the end of finals week. It will be an open book exam and computers will be allowed (though not required).

Collaboration Policy

Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor, but you cannot consult homework solutions from prior years and you must cite any use of material from outside references. All solutions that are handed in should be written up individually and should reflect your own understanding of the subject matter at the time of writing. Any computer code that is used to solve homework problems is considered part of your writeup and should be done individually (you can share ideas, but not code).

No collaboration is allowed on the final exam.

Course Text and References

The primary course texts are

* Please make sure to use the second edition [FBS2e].

The following additional references may also be useful:

  • [Lew03] A. D. Lewis, A Mathematical Approach to Classical Control, 2003. Online access.

Note: the only sources listed here are those that allow free access to online versions. Additional textbooks that are not freely available can be obtained from the library.