Difference between revisions of "Kapacitás számítása"

From Maxwell
Jump to: navigation, search
(A vizsgált elrendezés)
(A vizsgált elrendezés)
Line 47: Line 47:
 
|+ A vizsgált elrendezés kapacitása.
 
|+ A vizsgált elrendezés kapacitása.
 
!  
 
!  
! Matlab PDE Toolbox (Gyimóthy Sz.)
+
! Matlab PDE Toolbox (Gy.Sz.)
 
! ONELAB
 
! ONELAB
 
! ANSYS Maxwell
 
! ANSYS Maxwell

Revision as of 19:12, 28 January 2020

Kételektródás elrendezés kapacitásának számítása

Map of the world.
A feladat végeselemhálója és a peremek elnevezése.
Map of the world.
A feladat megoldása ONELAB (Gmsh + GetDP) segítségével.

A feladat célja

A feladat geometriája.
A feladat geometriája.
A feladat keresztmetszete a méretekkel.
A feladat keresztmetszete a méretekkel.

A hallgató megismerje a végeselem-módszerhez kapcsolódó főbb lépéseket, mint a geometria elkészítése vagy importálása, anyagparaméterek, peremfeltételek és gerjesztés megadása, eredmények megjelenítése. Emellett pedig bemutasson a hallgatónak egy szabadon hozzáférhető szoftvert, ami nagyon jól használható disszertációk és kutatások során, köszönhetően felhasználóbarát grafikus felületének és tetszőlegesen konfigurálható megoldójának.

A feladat példája Dr. habil Gyimóthy Szabolcs egyetemi docens Elektromágneses terek előadásából származik. Az előadást ajánlom mindenkinek aki betekintést szeretne kapni a végeselem-módszer elméleti hátterébe, hogy mi az, amit legtöbbször a szoftverek elrejtenek a felhasználó elől.

A példa az előadásban a Matlab PDE Toolbox segítségével kerül megoldásra. Itt a szabadon hozzáférhető ONELAB (Gmsh + GetDP) és a kereskedelmi ANSYS Maxwell szoftverekkel lesz a megoldás bemutatva. Ezen utóbbi szoftver elsősorban az előadásban elhangzott adaptív hálósűrítés miatt.

A ONELAB a neve alapján (Open Numerical Engineering LABoratory) egy nyitott, elsősorban a végeselem-módszeren alapuló numerikus mérnöki laboratórium. Két fő részből áll, ahol a grafikus környezetet a Gmsh adja, ami az elő- és utófeldolgozó és a hálógeneráló szerepét tölti be. A megoldó pedig a GetDP, ami alkalmas 1D-s, 2D-s síkbeli és forgásszimmetrikus és 3D-s sztatikus, szinuszos és harmonikus, időfüggő és sajátértékfeladatok megoldására.

Érdekességképpen a GetDP mellett még létezik a GetDDM, ami egy tartomány-dekompozíciós módszeren (optimalizált Schwarz-módszer) alapuló megoldó nagyméretű végeselem-módszeren alapuló feladatokhoz. A másik érdekesség a ONELAB mobilapplikáció, ami lehetővé teszi, hogy mobil eszközök (mobiltelefon, tablet) is használjuk a ONELAB-ot.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései és annak elméleti háttere;
  • Elektrosztatikus terek, Laplace-Poisson-egyenlet;
  • ONELAB részeinek (Gmsh, GetDP) ismerete.

A vizsgált elrendezés

A feladat részletes definiálása a videóban is megtalálható. Emellett készítettem egy háromdimenziós ábrát az elrendezés könnyebb elképzeléséhez és annak méretekkel ellátott keresztmetszetét. A feladat az eltolási szimmetria ([math]Z[/math]-tengely mentén nem változik a feladat, vagyis [math]\partial/\partial z = 0[/math]) miatt kétdimenziós feladatnak tekinthető. Emellett a geometria jelölt középvonalára is szimmetrikus az elrendezés, így elég a felét vizsgálni. Ezen túl pedig a fém részek elhagyhatók, mert ott az elektromos térerősség értéke nulla. Így elegendő a két fémrész közötti teret kitöltő [math]2.4\cdot\varepsilon_0[/math] permittivitású anyagot vizsgálni a megfelelő peremfeltételekkel. Dirichle-típusú peremfeltételként adjuk meg a külső és belső elektróda potenciálját (külső - [math]0~\text{V}[/math]; belső - [math]100~\text{V}[/math]). A szimmetriasík Neumann-típusú peremfeltétel lesz, viszont ez előírás nélkül, automatikusan is teljesül jelen feladatnál.

A feladat megoldásához a Laplace-egyenletet oldjuk meg

[math] -\,\text{div}\,\varepsilon\,\text{grad}\varphi = 0 [/math]

ahol [math]\varphi[/math] az elektromos skalárpotenciál, a következő peremfeltételekkel

[math]\Gamma_{\text{D}1} = 0~\text{V}[/math],
[math]\Gamma_{\text{D}2}= 100~\text{V}[/math],
[math]\Gamma_{\text{N}}= \frac{\partial \varphi}{\partial n} = 0[/math] (homogén Neumann-peremfeltétel).


A vizsgált elrendezés kapacitása.
Matlab PDE Toolbox (Gy.Sz.) ONELAB ANSYS Maxwell FEMM
Végeselemek száma 2944 2598 740 7885
Kapacitás [[math]\text{pF/m}[/math]] 173.51 173.78 173.33 173.70

Azonban egy csőtápvonal szimulációja előtt érdemes meghatározni a vágási frekvenciát (vagy határfrekvenciát, ami alatt nincs hullámterjedés a csőtápvonalban). A vágási frekvencia a következő összefüggéssel határozható meg[1][2]:

[math] f_{h,mn} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}[/math],

ahol [math]\mu[/math] és [math]\varepsilon[/math] a csőtápvonalat kitöltő dielektrikum permeabilitása és permittivitása.

A szimulációval kapott eredmények

A háló adaptív finomítása a lokális hiba alapján (ANSYS Maxwell).
A háló adaptív finomítása a lokális hiba alapján. [Kattints a képre az animáció megtekintéséhez.]

A levegővel kitöltött csőtápvonalnál [math]\text{TE}_{10}[/math] (ejtsd: té e egy nulla) módus esetében a vágási frekvencia

[math] f_{h,10} = \frac{1}{2\sqrt{\mu_0\varepsilon_0}}\sqrt{\left(\frac{1}{0,02}\right)^2 + \left(\frac{0}{0,01}\right)^2} = \frac{1}{2\sqrt{\mu_0\varepsilon_0}\cdot0,02}= 7,4926\text{GHz} \approx 7,5\text{GHz}[/math].

A bemeneti reflexió és az előre irányú átviteli tényező frekvenciafüggvényén (jobb oldali ábra) jól látható, hogy a szimulációval visszakaptuk az előzőleg analitikusan kiszámolt vágási frekvenciát. A vágási frekvenciát követően az átvitel eléri a maximumát.

Emellett a lenti ábrákon látható az elektromos (baloldali ábra - E field) és mágneses (jobboldali ábra - H field) térerősség a négyszögletes csőtápvonal keresztmetszetében [math]\text{TE}_{10}[/math] módusnál. Ezekhez tartozik a két animáció, amelyből látható, hogy az elektromos térerősségnek csak a terjedési irányra merőleges komponense van ([math] E_z = 0 [/math]), vagyis itt tényleg egy transzverzális elektromos ([math]\text{TE}[/math]) térről van szó.

TE10 Efield.png

TE10 Hfield.png

Az elektromos térerősség vektorok a bemeneti portnál [math]\text{TE}_{10}[/math] módus esetében. A mágneses térerősség vektorok a bemeneti portnál [math]\text{TE}_{10}[/math] módus esetében.

CapacitorCalculation AdaptiveMeshing.gif

TE10 Hfield Vec Anim.gif

Az elektromos térerősség vektorok a csőtápvonalban [math]\text{TE}_{10}[/math] módus esetében.[Kattints a képre az animáció megtekintéséhez.] A mágneses térerősség vektorok a csőtápvonalban [math]\text{TE}_{10}[/math] módus esetében.[Kattints a képre az animáció megtekintéséhez.]

References

  1. Cite error: Invalid <ref> tag; no text was provided for refs named Istvanffy
  2. Kolos T., Standeisky I.: Mikrohullámú technika I., Tankönyvkiadó, 1980.