Difference between revisions of "2. lecke példája"
(→Az eredmények kiértékelése) |
(→Az eredmények kiértékelése) |
||
Line 1: | Line 1: | ||
+ | {| width=100% | ||
+ | |- | ||
+ | | colspan=2 align=center | | ||
+ | <font color='blue' size='+2'>Indukciós hevítés</font> | ||
+ | |- | ||
+ | | align=center | | ||
+ | [[Image:InductionHeating.jpg|450px]] | ||
+ | | align=center | | ||
+ | [[File:InductionHeating Maxwell3.gif|600px]] | ||
+ | |- | ||
+ | |align=center | Egy fém indukciós hevítése a valóságban. <ref>Induction heating - https://en.wikipedia.org/wiki/Induction_heating</ref> | ||
+ | |align=center | Egy fém indukciós hevítés szimulációval. [Kattints a képre az animáció megtekintéséhez]. | ||
+ | |- valign=top | ||
+ | | width=50% | | ||
+ | '''Oktató''' | ||
+ | * Marcsa Dániel (óraadó) | ||
+ | * Előadás: Kedd, 13:05 - 14:45 (D201), 14:50 - 15:35 (D105) | ||
+ | * Fogadóóra: egyeztetés alapján | ||
+ | | width=50% | | ||
+ | '''További oktatók:''' | ||
+ | * - | ||
+ | * Fogadóóra: -. | ||
+ | |} | ||
+ | |||
+ | === A feladat célja === | ||
+ | A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása egy örvényáramú szimuláción keresztül. Elősegítse az indukcióval történő olvasztás, hevítés és edzés fizikai hátterének mélyebb megismerését. | ||
+ | |||
+ | === A feladat megoldásához szükséges ismeretek === | ||
+ | * A végeselem-módszer lépései; | ||
+ | * A kvázistacionárius mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához). | ||
+ | |||
+ | === A feladat megoldásának lépései === | ||
+ | Az ANSYS Electronics Desktop elindítását követően a menüből kiválasztjuk a ''Project -> Insert Maxwell 3D Design'' almenüt. <br /> A következőkben bemutatott lépésektől eltérően is megvalósítható a feladat. Az ANSYS Maxwell használatához a ''Help'' menüje és a ''YouTube''-on fellelhető videók sok segítséget nyújtanak. | ||
+ | |||
+ | == A geometria elkészítése == | ||
+ | Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriát, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál. | ||
+ | |||
+ | Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a ''Modeler -> Import...'' menü segítségével lehetséges. | ||
+ | |||
+ | == A feladat beállításai == | ||
+ | |||
+ | === Az anyagok definiálása === | ||
+ | Ebben a feladatban a hevítéshez használt tekercs anyaga ''réz'' (copper), a hevített vas ''öntöttvas'' (cast iron) és még definiálni kell a tekercset és vasat körülvevő ''levegőt'' (air). | ||
+ | |||
+ | A levegő definiálásához a legegyszerűbb a ''Region''-t használni, ahol | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | +X Padding | ||
+ | | 0% | ||
+ | |- | ||
+ | | -X Padding | ||
+ | | 75% | ||
+ | |- | ||
+ | | +Y Padding | ||
+ | | 160% | ||
+ | |- | ||
+ | | -Y Padding | ||
+ | | 160% | ||
+ | |- | ||
+ | | +Z Padding | ||
+ | | 100% | ||
+ | |- | ||
+ | | -Z Padding | ||
+ | | 100% | ||
+ | |} | ||
+ | |||
+ | === A gerjesztés megadása === | ||
+ | A gerjesztés a tekercs két kivezetésének felületére kell definiálni. A gerjesztés 50A, amelyet a tekercs kivezetéseinek felületére kell definiálni. A definiálásnál arra kell ügyelni, hogy az egyik felületen befelé, a másik feleületen kifelé adjuk meg a gerjesztés irányát. | ||
+ | |||
+ | === A hálózási beállítások === | ||
+ | [[File:InductionHeating FEMMesh.png|360px|thumb|left|alt=Az öntöttvas rúd és a tekercs diszkretizálása.|Az öntöttvas rúd és a tekercs diszkretizálása.]] | ||
+ | |||
+ | Az ''Eddy Current'' megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a ''Skin Depth Based...'' hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges. | ||
+ | |||
+ | Az öntöttvas rúd felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem változtatja a felbontás azokon a részeken, ahol a ''Skin Depth Based...'' műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben. | ||
+ | |||
+ | == A megoldó beállítása, a szimuláció futtatása == | ||
+ | |||
+ | Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (''Maximum Number of Passes'') legyen 10, a hibahatár (''Percent Error'') pedig 0,5%. A finomítás mértékét adaptív lépésenként (''Refinement Per Pass'') háromdimenziós feladat esetében célszerű az alapértékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogyan csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (''Adaptive Frequency'') megadni, ennél a példánál <math>f = 500~\text{Hz}</math>. | ||
+ | |||
+ | Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (''Nonlinear Residual'') beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (''Relative Residual''). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (''Use higher order shape functions''), illetve ha szükséges a frekvenciasöprés (''Frequency Sweep'') tartományát és az ahhoz tartozó lépésközt. | ||
+ | |||
{| width=100% | {| width=100% | ||
|- | |- | ||
Line 85: | Line 167: | ||
Az 1. lecke példájánál látott változókon (induktivitás, erő) túl meghatározhatjuk a vasdarabban, a tekercsben létrejövő veszteségeket. Ezek a mennyiségek a frekvencia függvényében (''Frequency Sweep'' lehetősége) is vizsgálhatóak. | Az 1. lecke példájánál látott változókon (induktivitás, erő) túl meghatározhatjuk a vasdarabban, a tekercsben létrejövő veszteségeket. Ezek a mennyiségek a frekvencia függvényében (''Frequency Sweep'' lehetősége) is vizsgálhatóak. | ||
− | Az [ ANSYS Maxwell] automatikusan kiszámítja a veszteségeket a feladatban, azonban ha arra vagyunk kíváncsiak, egy-egy térrészben (pl. az öntöttvas rúdban) mekkora az örvényáram okozta veszteség, akkor azt nekünk kell kiszámolni a ''Calculator'' (Maxwell 3D | + | Az [ ANSYS Maxwell] automatikusan kiszámítja a veszteségeket a feladatban, azonban ha arra vagyunk kíváncsiak, egy-egy térrészben (pl. az öntöttvas rúdban) mekkora az örvényáram okozta veszteség, akkor azt nekünk kell kiszámolni a ''Calculator'' (Maxwell 3D \arrow Fields \arrow Calculator...) segítségével. Az örvényáramú veszteség a következő összefüggéssel számítható |
<math> P_{ö} = \frac{1}{2}\int_{V} \vec{J}\cdot\vec{E}^{*}\,\text{d}V = \int_{V} \frac{\vec{J}\cdot\vec{J}^{*}}{2\sigma}\,\text{d}V</math> [W]. | <math> P_{ö} = \frac{1}{2}\int_{V} \vec{J}\cdot\vec{E}^{*}\,\text{d}V = \int_{V} \frac{\vec{J}\cdot\vec{J}^{*}}{2\sigma}\,\text{d}V</math> [W]. | ||
Line 101: | Line 183: | ||
|- | |- | ||
| align=center | | | align=center | | ||
− | [[File:InductionHeating_HStreamlines.png| | + | [[File:InductionHeating_HStreamlines.png|550px]] |
| align=center | | | align=center | | ||
− | [[File:InductionHeating OhmicLoss.png| | + | [[File:InductionHeating OhmicLoss.png|550px]] |
|- | |- | ||
|align=center | A tekercs körül kialakuló mágneses térerősség. | |align=center | A tekercs körül kialakuló mágneses térerősség. | ||
− | |align=center | Az | + | |align=center | Az örvényáramú veszteség az öntöttvas rúd felületén. |
|} | |} | ||
+ | |||
+ | == Irodalomjegyzék == | ||
+ | {{reflist}} | ||
== Irodalomjegyzék == | == Irodalomjegyzék == | ||
{{reflist}} | {{reflist}} |
Revision as of 10:57, 7 March 2019
Indukciós hevítés | |
Egy fém indukciós hevítése a valóságban. [1] | Egy fém indukciós hevítés szimulációval. [Kattints a képre az animáció megtekintéséhez]. |
Oktató
|
További oktatók:
|
Contents
- 1 A feladat célja
- 2 A feladat megoldásához szükséges ismeretek
- 3 A feladat megoldásának lépései
- 4 A geometria elkészítése
- 5 A feladat beállításai
- 6 A megoldó beállítása, a szimuláció futtatása
- 7 A geometria elkészítése
- 8 A feladat beállításai
- 9 A megoldó beállítása, a szimuláció futtatása
- 10 Az eredmények kiértékelése
- 11 Irodalomjegyzék
- 12 Irodalomjegyzék
A feladat célja
A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása egy örvényáramú szimuláción keresztül. Elősegítse az indukcióval történő olvasztás, hevítés és edzés fizikai hátterének mélyebb megismerését.
A feladat megoldásához szükséges ismeretek
- A végeselem-módszer lépései;
- A kvázistacionárius mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához).
A feladat megoldásának lépései
Az ANSYS Electronics Desktop elindítását követően a menüből kiválasztjuk a Project -> Insert Maxwell 3D Design almenüt.
A következőkben bemutatott lépésektől eltérően is megvalósítható a feladat. Az ANSYS Maxwell használatához a Help menüje és a YouTube-on fellelhető videók sok segítséget nyújtanak.
A geometria elkészítése
Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriát, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál.
Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a Modeler -> Import... menü segítségével lehetséges.
A feladat beállításai
Az anyagok definiálása
Ebben a feladatban a hevítéshez használt tekercs anyaga réz (copper), a hevített vas öntöttvas (cast iron) és még definiálni kell a tekercset és vasat körülvevő levegőt (air).
A levegő definiálásához a legegyszerűbb a Region-t használni, ahol
+X Padding | 0% |
-X Padding | 75% |
+Y Padding | 160% |
-Y Padding | 160% |
+Z Padding | 100% |
-Z Padding | 100% |
A gerjesztés megadása
A gerjesztés a tekercs két kivezetésének felületére kell definiálni. A gerjesztés 50A, amelyet a tekercs kivezetéseinek felületére kell definiálni. A definiálásnál arra kell ügyelni, hogy az egyik felületen befelé, a másik feleületen kifelé adjuk meg a gerjesztés irányát.
A hálózási beállítások
Az Eddy Current megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a Skin Depth Based... hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges.
Az öntöttvas rúd felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem változtatja a felbontás azokon a részeken, ahol a Skin Depth Based... műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben.
A megoldó beállítása, a szimuláció futtatása
Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (Maximum Number of Passes) legyen 10, a hibahatár (Percent Error) pedig 0,5%. A finomítás mértékét adaptív lépésenként (Refinement Per Pass) háromdimenziós feladat esetében célszerű az alapértékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogyan csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (Adaptive Frequency) megadni, ennél a példánál [math]f = 500~\text{Hz}[/math].
Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (Nonlinear Residual) beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (Relative Residual). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (Use higher order shape functions), illetve ha szükséges a frekvenciasöprés (Frequency Sweep) tartományát és az ahhoz tartozó lépésközt.
Indukciós hevítés | |
Egy fém indukciós hevítése a valóságban. [2] | Egy fém indukciós hevítés szimulációval. [Kattints a képre az animáció megtekintéséhez]. |
Oktató
|
További oktatók:
|
A feladat célja
A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása egy örvényáramú szimuláción keresztül. Elősegítse az indukcióval történő olvasztás, hevítés és edzés fizikai hátterének mélyebb megismerését.
A feladat megoldásához szükséges ismeretek
- A végeselem-módszer lépései;
- A kvázistacionárius mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához).
A feladat megoldásának lépései
Az ANSYS Electronics Desktop elindítását követően a menüből kiválasztjuk a Project -> Insert Maxwell 3D Design almenüt.
A következőkben bemutatott lépésektől eltérően is megvalósítható a feladat. Az ANSYS Maxwell használatához a Help menüje és a YouTube-on fellelhető videók sok segítséget nyújtanak.
A geometria elkészítése
Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriát, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál.
Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a Modeler -> Import... menü segítségével lehetséges.
A feladat beállításai
Az anyagok definiálása
Ebben a feladatban a hevítéshez használt tekercs anyaga réz (copper), a hevített vas öntöttvas (cast iron) és még definiálni kell a tekercset és vasat körülvevő levegőt (air).
A levegő definiálásához a legegyszerűbb a Region-t használni, ahol
+X Padding | 0% |
-X Padding | 75% |
+Y Padding | 160% |
-Y Padding | 160% |
+Z Padding | 100% |
-Z Padding | 100% |
A gerjesztés megadása
A gerjesztés a tekercs két kivezetésének felületére kell definiálni. A gerjesztés 50A, amelyet a tekercs kivezetéseinek felületére kell definiálni. A definiálásnál arra kell ügyelni, hogy az egyik felületen befelé, a másik feleületen kifelé adjuk meg a gerjesztés irányát.
A hálózási beállítások
Az Eddy Current megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a Skin Depth Based... hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges.
Az öntöttvas rúd felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem változtatja a felbontás azokon a részeken, ahol a Skin Depth Based... műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben.
A megoldó beállítása, a szimuláció futtatása
Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (Maximum Number of Passes) legyen 10, a hibahatár (Percent Error) pedig 0,5%. A finomítás mértékét adaptív lépésenként (Refinement Per Pass) háromdimenziós feladat esetében célszerű az alapértékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogyan csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (Adaptive Frequency) megadni, ennél a példánál [math]f = 500~\text{Hz}[/math].
Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (Nonlinear Residual) beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (Relative Residual). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (Use higher order shape functions), illetve ha szükséges a frekvenciasöprés (Frequency Sweep) tartományát és az ahhoz tartozó lépésközt.
Az eredmények kiértékelése
Az 1. lecke példájánál látott változókon (induktivitás, erő) túl meghatározhatjuk a vasdarabban, a tekercsben létrejövő veszteségeket. Ezek a mennyiségek a frekvencia függvényében (Frequency Sweep lehetősége) is vizsgálhatóak.
Az [ ANSYS Maxwell] automatikusan kiszámítja a veszteségeket a feladatban, azonban ha arra vagyunk kíváncsiak, egy-egy térrészben (pl. az öntöttvas rúdban) mekkora az örvényáram okozta veszteség, akkor azt nekünk kell kiszámolni a Calculator (Maxwell 3D \arrow Fields \arrow Calculator...) segítségével. Az örvényáramú veszteség a következő összefüggéssel számítható
[math] P_{ö} = \frac{1}{2}\int_{V} \vec{J}\cdot\vec{E}^{*}\,\text{d}V = \int_{V} \frac{\vec{J}\cdot\vec{J}^{*}}{2\sigma}\,\text{d}V[/math] [W].
Azonban a fenti összefüggés helyett a Calculator-ban a következő lépéseket kell elvégezni
- Input [math]\to[/math] Quantity [math]\to[/math] OhmicLoss
- Input [math]\to[/math] Geometry [math]\to[/math] Itt kiválasztjuk a térfogatot, ahol számolni szeretnénk a veszteséget
- Scalar [math]\to[/math] [math]\int[/math] (Integrálás)
- Output [math]\to[/math] Eval
A térváltozók is megjeleníthetőek különböző formában erre mutat egy-egy példát a következő két ábra.
A tekercs körül kialakuló mágneses térerősség. | Az örvényáramú veszteség az öntöttvas rúd felületén. |
Irodalomjegyzék
Irodalomjegyzék
- ↑ Induction heating - https://en.wikipedia.org/wiki/Induction_heating
- ↑ Induction heating - https://en.wikipedia.org/wiki/Induction_heating