Difference between revisions of "Kapacitás számítása"

From Maxwell
Jump to: navigation, search
(A szimulációval kapott eredmények)
(A szimulációval kapott eredmények)
Line 76: Line 76:
  
 
<gallery>
 
<gallery>
File:CapacitorCalculation Efield Linear.png|alt=Az elektromos térerősség nagysága lineáris közelítés esetén. | Az elektromos térerősség nagysága lineáris közelítés esetén.
+
File:CapacitorCalculation Efield Linear.png| Az elektromos térerősség nagysága lineáris közelítés esetén.
File:CapacitorCalculation Efield Linear Smooth.png|alt2=Profile of stone face jutting out from a mountainside. Three workers clamber over it, each about the height of the face's upper lip.|Construction on the George Washington portrait at [[Mount Rushmore]], c. 1932.
+
File:CapacitorCalculation Efield Linear Smooth.png|Az elektromos térerősség nagysága a simítást követően.
 
</gallery>
 
</gallery>
  

Revision as of 23:04, 28 January 2020

Kételektródás elrendezés kapacitásának számítása

Map of the world.
A feladat végeselemhálója és a peremek elnevezése.
Map of the world.
A feladat megoldása ONELAB (Gmsh + GetDP) segítségével.

Oktató

  • Marcsa Dániel (óraadó)
  • Előadás: -
  • Fogadóóra: egyeztetés alapján

További oktatók:

  • -
  • Fogadóóra: -.

A feladat célja

A feladat geometriája.
A feladat geometriája.
A feladat keresztmetszete a méretekkel.
A feladat keresztmetszete a méretekkel.

A hallgató megismerje a végeselem-módszerhez kapcsolódó főbb lépéseket, mint a geometria elkészítése vagy importálása, anyagparaméterek, peremfeltételek és gerjesztés megadása, eredmények megjelenítése. Emellett pedig bemutasson a hallgatónak egy szabadon hozzáférhető szoftvert, ami nagyon jól használható disszertációk és kutatások során, köszönhetően felhasználóbarát grafikus felületének és tetszőlegesen konfigurálható megoldójának.

A feladat példája Dr. habil Gyimóthy Szabolcs egyetemi docens Elektromágneses terek előadásából származik. Az előadást ajánlom mindenkinek aki betekintést szeretne kapni a végeselem-módszer elméleti hátterébe, hogy mi az, amit legtöbbször a szoftverek elrejtenek a felhasználó elől.

A példa az előadásban a Matlab PDE Toolbox segítségével kerül megoldásra. Itt a szabadon hozzáférhető ONELAB (Gmsh + GetDP) és a kereskedelmi ANSYS Maxwell szoftverekkel lesz a megoldás bemutatva. Ezen utóbbi szoftver elsősorban az előadásban elhangzott adaptív hálósűrítés miatt.

A ONELAB a neve alapján (Open Numerical Engineering LABoratory) egy nyitott, elsősorban a végeselem-módszeren alapuló numerikus mérnöki laboratórium. Két fő részből áll, ahol a grafikus környezetet a Gmsh adja, ami az elő- és utófeldolgozó és a hálógeneráló szerepét tölti be. A megoldó pedig a GetDP, ami alkalmas 1D-s, 2D-s síkbeli és forgásszimmetrikus és 3D-s sztatikus, szinuszos és harmonikus, időfüggő és sajátértékfeladatok megoldására.

Érdekességképpen a GetDP mellett még létezik a GetDDM, ami egy tartomány-dekompozíciós módszeren (optimalizált Schwarz-módszer) alapuló megoldó nagyméretű végeselem-módszeren alapuló feladatokhoz. A másik érdekesség a ONELAB mobilapplikáció, ami lehetővé teszi, hogy mobil eszközök (mobiltelefon, tablet) is használjuk a ONELAB-ot.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései és annak elméleti háttere;
  • Elektrosztatikus terek, Laplace-Poisson-egyenlet;
  • ONELAB részeinek (Gmsh, GetDP) ismerete.

A vizsgált elrendezés

A feladat részletes definiálása a videóban is megtalálható. Emellett készítettem egy háromdimenziós ábrát az elrendezés könnyebb elképzeléséhez és annak méretekkel ellátott keresztmetszetét. A feladat az eltolási szimmetria ([math]Z[/math]-tengely mentén nem változik a feladat, vagyis [math]\partial/\partial z = 0[/math]) miatt kétdimenziós feladatnak tekinthető. Emellett a geometria jelölt középvonalára is szimmetrikus az elrendezés, így elég a felét vizsgálni. Ezen túl pedig a fém részek elhagyhatók, mert ott az elektromos térerősség értéke nulla. Így elegendő a két fémrész közötti teret kitöltő [math]2.4\cdot\varepsilon_0[/math] permittivitású anyagot vizsgálni a megfelelő peremfeltételekkel. Dirichle-típusú peremfeltételként adjuk meg a külső és belső elektróda potenciálját (külső - [math]0~\text{V}[/math]; belső - [math]100~\text{V}[/math]). A szimmetriasík Neumann-típusú peremfeltétel lesz, viszont ez előírás nélkül, automatikusan is teljesül jelen feladatnál.

A feladat megoldásához a Laplace-egyenletet oldjuk meg

[math] -\,\text{div}\,\varepsilon\,\text{grad}\varphi = 0 [/math]

ahol [math]\varphi[/math] az elektromos skalárpotenciál, a következő peremfeltételekkel

[math]\Gamma_{\text{D}1} = 0~\text{V}[/math],
[math]\Gamma_{\text{D}2}= 100~\text{V}[/math],
[math]\Gamma_{\text{N}}= \frac{\partial \varphi}{\partial n} = 0[/math] (homogén Neumann-peremfeltétel).

A szimulációval kapott eredmények

A háló adaptív finomítása a lokális hiba alapján (ANSYS Maxwell).
A háló adaptív finomítása a lokális hiba alapján. [Kattints a képre az animáció megtekintéséhez.]

Az előbb megadott parciális differenciálegyenlet és peremfeltételekkel előálló feladat megoldásával a következő táblázatban összefoglalt eredmények születtek a kapacitás értékére. A Matlab PDE Toolbox megoldása az előadásból (Gyimóthy Szabolcstól) származik. Gyakorlatilag a négy szoftver azonos megoldásra vezetett. Ilyen szempontból sokkal érdekesebb a végeselemek száma. Mindegyik esetben lineáris háromszög elemekkel lett felbontva a vizsgált tartomány.

A vizsgált elrendezés kapacitása.
Matlab PDE Toolbox ONELAB ANSYS Maxwell FEMM
Végeselemek száma 2944 2598 740 7885
Kapacitás [[math]\text{pF/m}[/math]] 173.51 173.78 173.33 173.70

A lineáris végeselemkből következik, hogy végeselemen belül a [math]\varphi[/math] potenciál értéke lineárisan változik, vagyis az elektromos térerősség ([math]\vec{E}=\text{grad}\varphi[/math]) konstant a végeselemen belül. Ez jól megfigyelhető a jobb oldali ábrán. Az ilyen ábrák elkerülése végett használnak sokszor az utófeldolgozásnál valamilyen simító (smoothing) algoritmust.

CapacitorCalculation ElectricScalarPotential.png

CapacitorCalculation ElectricFieldVectors.png

Az elektromos skalárpotenciál értéke az elrendezésben. Az elektromos térerősség vektorai az elrendezésben.

References