Difference between revisions of "Féléves feladat"

From Maxwell
Jump to: navigation, search
(A söntellenállás rezisztencia és veszteség számítása végeselem-módszerrel)
(A söntellenállás rezisztencia és veszteség számítása végeselem-módszerrel)
Line 77: Line 77:
 
with following boundary conditions
 
with following boundary conditions
  
<math>\vec{J}\cdot\vec{n}=-J_{\text{n}}</math> on <math>\Gamma_{\text{J}}</math> (''This is the input'')
+
<math>\vec{J}\cdot\vec{n}=-J_{\text{n}}</math> on <math>\Gamma_{\text{J}}</math> (''Ez a bemenet.'')
  
 
and
 
and
  
<math>\varphi=U_0 = \text{0 V}</math> on <math>\Gamma_{\text{E}}</math> (''This is the output''),
+
<math>\varphi=U_0 = \text{0 V}</math> on <math>\Gamma_{\text{E}}</math> (''Ez a kimenet.''),
  
 
where <math>J_{\text{n}}</math> is the current density calculated from the specified current excitation.
 
where <math>J_{\text{n}}</math> is the current density calculated from the specified current excitation.

Revision as of 16:18, 17 February 2022

Söntellenállás vizsgálata

Oktató

  • Marcsa Dániel (óraadó)
  • Előadás: -
  • Fogadóóra: egyeztetés alapján

További oktatók:

  • -
  • Fogadóóra: -.

A feladat célja

A hallgatók elsajátítsák az elektromágneses térszámítás alapjait, főbb lépéseit, valamint gyakorlatot szerezzen az eredmények kiértékelésében és a nemzetközi elvárásoknak megfelelő Műszaki Jelentés (Technical Report) írásában.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • Az áramvezetési feladatra vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához);
  • A geometria elkészítéséhez CAD rendszer ismerete;
  • Az Ansys Electronics Desktop Student letöltése és telepítése.

A féléves feladat

A feladat két részből áll, egy alapfeladatból, amely hibátlan megoldásával maximum 80%, és egy plusz feladatból, amivel további maximum 20% érhető el.


Leadási határidő: Lásd a feladatkiírásnál!
Leadás formája: PDF formátumban. A színes ábrákat úgy kell elkészíteni, hogy fekete-fehérben kinyomtatva is világos legyen a tartalmuk az olvasó számára.
Benyújtás nyelve: Magyar
Benyújtás helye: A Moodle rendszerben kiírt feladatnál.
Késői benyújtás: Minden megkezdett nap után 5% levonás az elért eredményből (azaz pl. 5 nap késés után 100%-os leadandóra már csak max. 100% - 5x5% = 75%-ot lehet szerezni).
Értékelés: 0 – 50% - Elégtelen (1)
51 – 60% - Elégséges (2)
61 – 70% - Közepes (3)
71 – 85% - Jó (4)
86 – 100% - Jeles (5)
A formai követelmények tekintetében itt is az áramlástan és a mechanika résznél megismert elvárások érvényesek.

Feladat I. része

A söntellenállás rezisztencia és veszteség számítása végeselem-módszerrel

Ábra 1. - A feladat geometriája és méretei.

The geometry dimensions for your task you can find in the following table: Semester Assigment.

This task is a DC current conduction problem. The solved equation is

[math]\nabla\cdot\sigma\nabla \varphi=0[/math]

with following boundary conditions

[math]\vec{J}\cdot\vec{n}=-J_{\text{n}}[/math] on [math]\Gamma_{\text{J}}[/math] (Ez a bemenet.)

and

[math]\varphi=U_0 = \text{0 V}[/math] on [math]\Gamma_{\text{E}}[/math] (Ez a kimenet.),

where [math]J_{\text{n}}[/math] is the current density calculated from the specified current excitation.

The task: determine the voltage drop, the resistance and the ohmic loss of the problem.
The voltage drop is the potential difference between the two terminals of the arrangement. You can determine resistance using Ohm's law:

[math]R = \frac{U}{I}[/math],

then the ohmic loss

[math]P = I^2\cdot R[/math]

where [math]U[/math] is the voltage drop, [math]I[/math] is the current and [math]R[/math] is the resistance.

Anyagok fajlagos vezetőképessége.
Anyag Titánium Réz Alumínium Réz mangán ötvözet
[math]\sigma~[\text{MS/m}][/math] 1.82 58 38 20.833

Tasks

  • Draw the geometry based on the specified dimensions.
  • Define the problem based on the given material parameters and boundary conditions;
  • Creating and specifying the task geometry in Ansys Electronics Desktop Student;
  • Run the FEM simulation;

The parameters listed in the task can be calculated with the Maxwell 3D - DC Conduction solver and the Q3D Extractor - DC solver.

CAE SA EMSolutions 2022Spring.png

Ábra 2. - Lehetséges megoldások (Bal - Maxwell 3D, Jobb - Q3D Extractor).
A tesztfeladat eredményei.
Mennyiségek Feszültségesés [mV] Rezisztencia [[math]\text{n}\Omega[/math]] Veszteség [W]
Maxwell 3D 10.9927 18.3211 6.5956
Q3D Extractor 10.9759 18.2931 6.5855

CAE SA ShuntResistor Maxwell Loss.png

CAE SA ShuntResistor Q3D Loss.png

Ansys Maxwell 3D - Az áram okozta veszteség a söntellenállás felületén. Ansys Q3D Extractor - Az áram okozta veszteség a söntellenállás felületén.

Feladat II. része

Az Ansys EM diákverziójában az Icepak ad lehetőséget a termikus jelenségek vizsgálatára. Ansys Icepak egy általános áramlástani megoldó elektronikák (PCB / teljesítménymodul) melegedésének és hűtésének vizsgálatához fejlesztett specifikus képességekkel.

A feladatnál a hűtés természetes konvekció. A gerjesztés az elektromágneses szimulációból származó veszteség.

Anyagok termikus tulajdonságai.
Anyag Titánium Réz Alumínium Réz mangán ötvözet
[math]\rho~[\text{kg}/\text{m}^3][/math] 4500 8933 2689 8400
[math]c_{\text{P}}~[\text{J}/(\text{kg}\cdot\text{°C})][/math] 522 385 951 410
[math]\lambda~[\text{W}/(\text{m}\cdot\text{°C})][/math] 21 400 237.5 22

A termikus szimulációval kapott eredményeket mutatja a következő táblázat.

A tesztfeladat eredményei.
Mennyiségek Max. hőmérséklet [°C] Min. hőmérséklet [°C] Max. sebesség [m/s]
Maxwell 3D + Icepak 75.9284 71.3658 0.2881
Q3D Extractor + Icepak 75.8669 71.3002 0.2880

CAE SA ShuntResistor Maxwell Temp.png

CAE SA ShuntResistor Q3D Temp.png

Ansys Maxwell 3D + Ansys Icepak - Hőmérsékleteloszlás a söntellenállás felületén. Ansys Q3D Extractor + Ansys Icepak - Hőmérsékleteloszlás a söntellenállás felületén.

A mintafeladat archivált változatát a következő linken találja: Shunt Resistor (Ansys EM Student 2021 R2).

References