Difference between revisions of "2. lecke példája"

From Maxwell
Jump to: navigation, search
Line 34: Line 34:
  
 
== A geometria elkészítése ==
 
== A geometria elkészítése ==
Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriár, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál.  
+
Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriát, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál.  
  
 
Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a ''Modeler -> Import...'' menü segítségével lehetséges.
 
Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a ''Modeler -> Import...'' menü segítségével lehetséges.
Line 73: Line 73:
 
Az ''Eddy Current'' megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a ''Skin Depth Based...'' hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges.
 
Az ''Eddy Current'' megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a ''Skin Depth Based...'' hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges.
  
Az öntöttvas rús felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem váltotatja a felbontás azokon a részeken, ahol a ''Skin Depth Based...'' műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben.
+
Az öntöttvas rúd felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem változtatja a felbontás azokon a részeken, ahol a ''Skin Depth Based...'' műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben.
  
 
== A megoldó beállítása, a szimuláció futtatása ==
 
== A megoldó beállítása, a szimuláció futtatása ==
  
Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (''Maximum Number of Passes'') legyen 10, a hibahatár (''Percent Error'') pedig 0,5%. A finomítás mértékét adaptív lépsenként (''Refinement Per Pass'') háromdimenziós feladat esetében célszerű az alaprtékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogya csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (''Adaptive Frequency'') megadni, ennél a példánál <math>f = 500~\text{Hz}</math>.
+
Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (''Maximum Number of Passes'') legyen 10, a hibahatár (''Percent Error'') pedig 0,5%. A finomítás mértékét adaptív lépésenként (''Refinement Per Pass'') háromdimenziós feladat esetében célszerű az alapértékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogyan csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (''Adaptive Frequency'') megadni, ennél a példánál <math>f = 500~\text{Hz}</math>.
  
 
Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (''Nonlinear Residual'') beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (''Relative Residual''). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (''Use higher order shape functions''), illetve ha szükséges a frekvenciasöprés (''Frequency Sweep'') tartományát és az ahhoz tartozó lépésközt.  
 
Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (''Nonlinear Residual'') beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (''Relative Residual''). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (''Use higher order shape functions''), illetve ha szükséges a frekvenciasöprés (''Frequency Sweep'') tartományát és az ahhoz tartozó lépésközt.  
  
 
== Az eredmények kiértékelése ==
 
== Az eredmények kiértékelése ==
 +
 +
Az 1. lecke példájánál látott változókon (induktivitás, erő) túl meghatározhatjuk a vasdarabban, a tekercsben létrejövő veszteségeket. Ezek a mennyiségek a frekvencia függvényében (''Frequency Sweep'' lehetősége) is vizsgálhatóak.
 +
 +
Az [ ANSYS Maxwell] automatikusan kiszámítja a veszteségeket a feladatban, azonban ha arra vagyunk kíváncsiak, egy-egy térrészben (pl. az öntöttvas rúdban) mekkora az örvényáram okozta veszteség, akkor azt nekünk kell kiszámolni a ''Calculator'' (Maxwell 3D \arrow Fields \arrow Calculator...) segítségével. Az örvényáramveszteség a következő összefüggéssel számítható
 +
 +
<math> P_{ö} = \frac{1}{2}\int_{V} \vec{J}\cdot\vec{E}^{*}\,\text{d}V = \int_{V} \frac{\vec{J}\cdot\vec{J}^{*}}{2\sigma}\,\text{d}V</math> [W].
 +
 +
Azonban a fenti összefüggés helyett a ''Calculator''-ban a következő lépéseket kell elvégezni
 +
 +
* Input \array Quantity \array Ohmic-loss
 +
* Input \array Geometry \array ''Itt kiválasztjuk a térfogatot, ahol számolni szeretnénk a veszteséget''
 +
* Scalar \array <math>\int</math> (''Integrálás'')
 +
* Output \array Eval
 +
 +
A térváltozók is megjeleníthetőek különböző formában erre mutat egy-egy példát a következő két ábra.
 +
 +
{| width=100%
 +
|-
 +
| align=center |
 +
[[File:Injector3.gif|550px]]
 +
| align=center |
 +
[[File:Pelda ResultsB.png|550px]]
 +
|-
 +
|align=center | A tekercs körül kialakuló mágneses térerősség.
 +
|align=center | Az örvényáramveszteség az öntöttvas rúd felületén.
 +
|}
  
 
== Irodalomjegyzék ==
 
== Irodalomjegyzék ==
 
{{reflist}}
 
{{reflist}}

Revision as of 10:17, 7 March 2019

Indukciós hevítés

InductionHeating.jpg

InductionHeating Maxwell3.gif

Egy fém indukciós hevítése a valóságban. [1] Egy fém indukciós hevítés szimulációval. [Kattints a képre az animáció megtekintéséhez].

Oktató

  • Marcsa Dániel (óraadó)
  • Előadás: Kedd, 13:05 - 14:45 (D201), 14:50 - 15:35 (D105)
  • Fogadóóra: egyeztetés alapján

További oktatók:

  • -
  • Fogadóóra: -.

A feladat célja

A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása egy örvényáramú szimuláción keresztül. Elősegítse az indukcióval történő olvasztás, hevítés és edzés fizikai hátterének mélyebb megismerését.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • A kvázistacionárius mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához).

A feladat megoldásának lépései

Az ANSYS Electronics Desktop elindítását követően a menüből kiválasztjuk a Project -> Insert Maxwell 3D Design almenüt.
A következőkben bemutatott lépésektől eltérően is megvalósítható a feladat. Az ANSYS Maxwell használatához a Help menüje és a YouTube-on fellelhető videók sok segítséget nyújtanak.

A geometria elkészítése

Ebben az esetben egy előre elkészített geometriával dolgozunk. Ez annak felel meg, amikor egy tervező már elkészítettet a geometriát, amit a szimulációs mérnök használ az eszköz számítógépes vizsgálatánál.

Tehát ennél a feladatnál a geometria importálásra kerül. A geometria importálása a Modeler -> Import... menü segítségével lehetséges.

A feladat beállításai

Az anyagok definiálása

Ebben a feladatban a hevítéshez használt tekercs anyaga réz (copper), a hevített vas öntöttvas (cast iron) és még definiálni kell a tekercset és vasat körülvevő levegőt (air).

A levegő definiálásához a legegyszerűbb a Region-t használni, ahol

+X Padding 0%
-X Padding 75%
+Y Padding 160%
-Y Padding 160%
+Z Padding 100%
-Z Padding 100%

A gerjesztés megadása

A gerjesztés a tekercs két kivezetésének felületére kell definiálni. A gerjesztés 50A, amelyet a tekercs kivezetéseinek felületére kell definiálni. A definiálásnál arra kell ügyelni, hogy az egyik felületen befelé, a másik feleületen kifelé adjuk meg a gerjesztés irányát.

A hálózási beállítások

Az öntöttvas rúd és a tekercs diszkretizálása.
Az öntöttvas rúd és a tekercs diszkretizálása.

Az Eddy Current megoldás típusnál a megoldó adaptívan sűríti a hálót. Azonban olyan esetekben, amikor az örvényáram jelentős lehet, célszerű a Skin Depth Based... hálózási műveletet alkalmazni azokra a felületekre, ahol ez szükséges.

Az öntöttvas rúd felületére alkalmaztam ezt a hálózást, ahogy az ábrán is látható. Az ANSYS Maxwell 2019R1-es verziójától kezdve az adaptív hálózó nem változtatja a felbontás azokon a részeken, ahol a Skin Depth Based... műveletet definiáltuk. Ennek a célja a gyorsabb konvergencia, azonban emiatt fontos a felbontás megfelelő definiálása a behatolási mélységben.

A megoldó beállítása, a szimuláció futtatása

Ahogy a hálózási beállításoknál írtam, adaptívan sűríti a szükséges helyeken a megoldó a felbontást. Azonban az adaptív hálósűrítés paramétereit a megoldónál kell beállítani. Az adaptív lépések maximális száma (Maximum Number of Passes) legyen 10, a hibahatár (Percent Error) pedig 0,5%. A finomítás mértékét adaptív lépésenként (Refinement Per Pass) háromdimenziós feladat esetében célszerű az alapértékről (30%) lejjebb venni. Ez különösen akkor igaz, ha nincs előzetes információnk, hogy milyen módon konvergál, hogyan csökken a hiba a példa esetében. A finomítás mértéke 20% legyen. A megoldónál lehet a gerjesztés frekvenciáját (Adaptive Frequency) megadni, ennél a példánál [math]f = 500~\text{Hz}[/math].

Az előző beállítások mellett még lehetőség van a nemlineáris maradékot (Nonlinear Residual) beállítani, de a példa esetében minden anyag lineár mágnesezési karakterisztikával rendelkezik. Ha szükséges itt lehet a direkt megoldó helyett bekapcsolni az iteratív megoldót, ahol szintén definiálni kell a leállási kritériumként szolgáló hibát (Relative Residual). Az adaptív hálósűrítés mellett, ennél a feladattípusnál lehetőség van magasabb fokú formafüggvények használatára (Use higher order shape functions), illetve ha szükséges a frekvenciasöprés (Frequency Sweep) tartományát és az ahhoz tartozó lépésközt.

Az eredmények kiértékelése

Az 1. lecke példájánál látott változókon (induktivitás, erő) túl meghatározhatjuk a vasdarabban, a tekercsben létrejövő veszteségeket. Ezek a mennyiségek a frekvencia függvényében (Frequency Sweep lehetősége) is vizsgálhatóak.

Az [ ANSYS Maxwell] automatikusan kiszámítja a veszteségeket a feladatban, azonban ha arra vagyunk kíváncsiak, egy-egy térrészben (pl. az öntöttvas rúdban) mekkora az örvényáram okozta veszteség, akkor azt nekünk kell kiszámolni a Calculator (Maxwell 3D \arrow Fields \arrow Calculator...) segítségével. Az örvényáramveszteség a következő összefüggéssel számítható

[math] P_{ö} = \frac{1}{2}\int_{V} \vec{J}\cdot\vec{E}^{*}\,\text{d}V = \int_{V} \frac{\vec{J}\cdot\vec{J}^{*}}{2\sigma}\,\text{d}V[/math] [W].

Azonban a fenti összefüggés helyett a Calculator-ban a következő lépéseket kell elvégezni

  • Input \array Quantity \array Ohmic-loss
  • Input \array Geometry \array Itt kiválasztjuk a térfogatot, ahol számolni szeretnénk a veszteséget
  • Scalar \array [math]\int[/math] (Integrálás)
  • Output \array Eval

A térváltozók is megjeleníthetőek különböző formában erre mutat egy-egy példát a következő két ábra.

Injector3.gif

Pelda ResultsB.png

A tekercs körül kialakuló mágneses térerősség. Az örvényáramveszteség az öntöttvas rúd felületén.

Irodalomjegyzék

  1. Induction heating - https://en.wikipedia.org/wiki/Induction_heating