Csőtápvonal

From Maxwell
Revision as of 13:19, 1 October 2019 by Marcsa (talk | contribs) (A szimulációval kapott eredmények)

Jump to: navigation, search

Négyszög keresztmetszetű csőtápvonal (Rectangular waveguide)

Waveguides real.jpeg

Waveguide EField TE10.gif

Négyszög keresztmetszetű csőtápvonal. Az elektromos térerősség terjedése a csőtápvonalban. [Kattints a képre az animáció megtekintéséhez.]

A feladat célja

A feladat geometriája.
A feladat geometriája.

A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása egy négyszög keresztmetszetű csőtápvonal esetében. A szimuláció beállításai és eredményei elősegítsék a más tárgyakból tanult elméleti ismeretek elmélyülését.

A feladat megoldása során azzal nem foglalkozunk, milyen módon lehet a csőtápvonalba jelet juttatni.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • A Maxwell-egyenletek teljes rendszerének ismerete (hullámegyenlet ismerete);
  • Csőtápvonal működésének ismeret.

A vizsgált csőtápvonal

A feladat geometriai méretei: [math]a = 2\text{cm}[/math] (széles oldal); [math]b = 1\text{cm}[/math] (keskeny oldal); [math]L = 16\text{cm}; th = 1\text{mm}[/math] (csőtápvonal falvastagsága).

A geometria elkészítését és a beállításokat a feladathoz készült YouTube videóban részletezem.

Azonban egy csőtápvonal szimulációja előtt érdemes meghatározni a vágási frekvenciát (vagy határfrekvenciát, ami alatt nincs hullámterjedés a csőtápvonalban). A vágási frekvencia a következő összefüggéssel határozható meg:

[math] f_{h,mn} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}[/math],

ahol [math]\mu[/math] és [math]\varepsilon[/math] a csőtápvonalat kitöltő dielektrikum permeabilitása és permittivitása.

A levegővel kitöltött csőtápvonalnál [math]TE_{10}[/math] (ejtsd: té e egy nulla) módus esetében a vágási frekvencia

[math] f_{h,10} = \frac{1}{2\sqrt{\mu_0\varepsilon_0}}\sqrt{\left(\frac{1}{0,02}\right)^2 + \left(\frac{0}{0,01}\right)^2} = \frac{1}{2\sqrt{\mu_0\varepsilon_0}\cdot0,02}= 7,4926\text{GHz} \approx 7,5\text{GHz}[/math].

A szimulációval kapott eredmények

References