CEM

From Maxwell
Revision as of 13:57, 17 March 2019 by Marcsa (talk | contribs)

Jump to: navigation, search

Introduction to Computational Electromagnetics

Instructors

  • Dániel Marcsa (lecturer)
  • Lectures: Monday, 14:50 - 16:25 (D201), 16:30 - 17:15 (D105)
  • Office hours: by request

Teaching Assistants

  • -
  • Office hours: -.

Course Description

Introduction to fundamentals and techniques of finite element method and modelling in electromagnetics. The course includes: basics of electromagnetics, equations of static magnetic, electrostatic, eddy current and time-dependent problems, Helmholtz-equation, basic of finite element method, nodal and edge shape functions, boundary conditions, mesh operations. The course participants meet the following automotive examples in practice, fuel injection solenoid, induction heating, permanent magnet motor and an automobile cable harness analysis.

Syllabus

  • Template:BFS pdf
  • Chapter 1: Template:BFS pdf
    • Systems Biology: Modeling, Analysis and the Role of Feedback
    • The Cell as a System
    • Control and Dynamical Systems Tools
    • Input/Output Modeling
    • From Systems to Synthetic Biology
  • Chapter 2: Template:BFS pdf
    • Modeling Techniques
    • Transcription and Translation
    • Transcriptional Regulation
    • Post-Transcriptional Regulation
    • Cellular Subsystems
  • Chapter 3: Template:BFS pdf
    • Analysis Near Equilibria
    • Robustness
    • Oscillatory Behavior
    • Bifurcations
    • Model Reduction Techniques
  • Chapter 4: Template:BFS pdf
    • Stochastic Modeling of Biochemical Systems
    • Simulation of Stochastic Systems
    • Input/Output Linear Stochastic Systems
  • Chapter 5: Template:BFS pdf
    • Introduction to Biological Circuit Design
    • Negative Autoregulation
    • The Toggle Switch
    • The Repressilator
    • Activator-repressor Clock
    • An Incoherent Feedforward Loop (IFFL)
    • Bacterial Chemotaxis
  • Chapter 6: Template:BFS pdf
    • Input/Output Modeling and the Modularity Assumption
    • Introduction to Retroactivity
    • Retroactivity in Gene Circuits
    • Retroactivity in Signaling Systems
    • Insulation Devices: Retroactivity Attentuation
    • A Case Study on the Use of Insulation Devices
  • Chapter 7: Template:BFS pdf
    • Competition for Shared Cellular Resources
    • Stochastic Effects: Design Tradeoffs in Systems with Large Gains
  • Template:BFS pdf