1. lecke példája

From Maxwell
Revision as of 15:47, 4 July 2019 by Marcsa (talk | contribs) (A feladat)

Jump to: navigation, search

Üzemanyag befecskendező mágnesszelep

Injector3.gif

Pelda ResultsB.png

Az üzemanyag befecskendező működés közben. [1] Az üzemanyag befecskendezőnél a B vektorok a szolenoid bekapcsolását követően.

A feladat célja

A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása az üzemanyag befecskendező szolenoidjának szimulációján keresztül.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • A sztatikus mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához);
  • A geometria elkészítéséhez CAD rendszer ismerete (háromdimenziós esetben).

A feladat

A feladat geometrijának keresztmetszete és méretei.

A vizsgált feladat (ha elhanyagoljuk a bekapcsoláskor fellépő átmeneti állapotot) sztatikus mágneses feladatnak tekinthető. A vasmag mozgásának hatását is ennek megfelelően vizsgáljuk, vagyis minden pozícióhoz tartozik egy-egy szimuláció. Erre a különböző szoftverek más és más megoldást adnak (szkript, paramétervizsgálat). A feladat megoldása itt a FEMM és az ANSYS Discovery AIM Student szoftverekkel kerül bemutatásra, ezzel elősegítve a féléves feladat elkészítését.

A feladatban szereplő anyagok:

  • Vasmag: Nemlineáris mágnesezési görbével rendelkező acél (Steel1008);
  • Tekercs: Anyaga réz (Copper) és 2000 menetes (Number of Conductors). Az áramerősség (Current) 0,2 A;
  • Lezárás: Levegő (Air).

A feladat a mágnesszelep induktivitásának és a vasmagra ható erőnek a meghatározása. Első lépésként ajánlott a szimulációt validálni a táblázatban megadott értékekkel. Majd ezt követően vizsgálni a két mennyiséget a vasmag pozíciójának függvényében.

Példa megoldása

A következőkben a mágnesszelep megoldása és az eredmények kiértékelése kerül bemutatásra.

Finite Elemenet Method Magnetics ANSYS Discovery AIM
A FEMM szoftver használatához segítséget nyújt a következő két videó: A Discovery AIM szoftver használatához segítséget nyújt a következő három videó:
A FEMM kétdimenziós feladatok (síkbeli vagy hengerszimmetrikus) megoldására alkalmas. A vizsgált példa hengerszimmetrikus mágneses feladat. Ezért a Create a new problem ablakban a Magnetics Problem feladattípust kell választani. Ezt követően érdemes elsőnek a Problem menüre kattintva megadni a feladat típusát (Problem Type - Axisymmetric), a hossz mértékegységét (Length Units - Milimeters). A többi paraméter maradhat az alapbeállítás, de például frekvenciatartománybeli (harmonikus) feladat esetében itt lehet specifikálni a gerjesztés frekvenciáját.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A geometria elkészítésénél először a pontokat, majd a különböző tartományokat határoló vonalakat kell definiálni. A pontok a kurzor segítségével is elhelyezhetők, azonban ennek pontossága függ a rácspont sűrűségétől. Ezért célszerűbb a tabulátort (Tab) használni, ahol pontosan megadható a pont két koordinátája. Jelen (hengerszimmetrikus) esetben az a két koordináta az r (vízszintes) és a z (függőleges) koordináta. Majd a pontok a kurzor segítségével összeköthetőek, miután az Operation/Node menüről átváltunk az Operation/Segment műveletre. Az ábrán látható elrendezést kell kapnunk, ami már tartalmazza a lezárást is (100mm x 50mm).
A következő lépés az anyagok (Properties/Materials) és a feladatnál használt peremfeltétel (Properties/Boundary) definiálása. Ennél a példánál az anyagparaméternél adjuk meg a gerjesztést is mint áramsűrűség (Source Current Density). A [math]J[/math] áramsűrűséget a következő összefüggésel tudjuk meghatározni:
[math]J=\frac{N\cdot I}{A}[/math],

ahol [math]N[/math] a menetszám, [math]I[/math] az egy menetre jutó áramerősség és [math]A[/math] a tekercs keresztmetszete. A gerjesztés másik megadási módja a Properties/Circuits menünél deifinálni a tekercset, majd megadni hozzá a menetszámot. Ebben az esetben a FEMM automatikusan számolja a tekercshez kapcsolódó paramétereket (pl. induktivitás, fluxuskapcsolódás). A peremfeltétel (Properties/Boundary) ennél a példánál a feladat megoldásához használt [math]\vec{A}[/math] mágneses vektorpotenciál közvetlen előírása (Prescribed A) a peremen (Dirichlet vagy elsőfajú). A vektorpotenciál értéke nulla a peremen, ami annyit jelent, hogy a [math]\vec{B}[/math] mágneses fluxussűrűségnek csak tangenciális irányú komponense van.
Ha definiáltuk az anyagokat és a peremfeltételt az Operation/Block menüre váltva megadjuk a feladat tartományait. Majd a tartományok (Block) vagy peremek (Segment) jobb egérgombbal történő kijelölése utána a Space lenyomásával tudjuk definiálni a tartományhoz / peremhez tartozó anyagot / peremfeltételt.
Ha mindezzel megvagyunk mentsük el a feladatot.

Az üzemanyag befecskendező mágnesszelep geometriájának keresztmetszete.
Az üzemanyag befecskendező mágnesszelep geometriájának keresztmetszete.
Az ANSYS Discovery AIM (ANSYS Integrated Multiphysics) szoftverben sztatikus mágneses, elektrosztatika és frekvenciatartománybeli mágneses feladatokat lehet vizsgálni. Elsősorban a tervezőknek ajánlja az ANSYS, a koncepció fázisban lévő fejlesztéseknél egy-egy gyors ellenőrzéshez. De ettől függetlenül jól alkalmazható a lehetőségeinek megfelelően tetszőleges feladat megoldására is (ahogy ezt későbbi feladatoknál látjuk majd).
A Discovery AIM-nél a geometria elkészítéséhez a SpaceClaim áll rendelkezésre vagy geometria importálására van lehetőség.

A feladat geometriájának elkészítése itt nem kerül részletezésre, csak a gerjesztéshez fontos lépések kerülnek részletezésre. Először egy síkor hozunk létre a tekercs-vasmag elrendezés keresztmetszetében a Design - Plane ikon segítségével. Ezt követően a baloldalon található Szerkezet (Structure) ablakban a Tervkomponensre (struktúra fa gyökérébe) kattintva hozzáadunk egy új komponenst (New Component). Az új komponens tulajdonságai között (új komponensre kattintva Tulajdonságok (Properties)) a Topológia megosztása (Shared Topology) legyen Megosztásra (Shared) állítva. Ha ezt megtettük, a tekercset húzzuk bele az új komponensbe. Majd a következő lépésként rajzoljuk meg a tekercs keresztmetszetét felhasználva az elrendezés metszeti nézetét. Ha megrajzoltuk a tekercs keresztmetszetét, annak is az új komponens fájában kell lennie. Ennek köszönhetően az ANSYS Discovery AIM a megrajzolt felületet a tekercs keresztmetszeteként fogja kezelni, így erre a felületre előírható a gerjesztés. Végül a Tervkomponensre kattintva jobbegérgombbal válasszuk ki az Aktív komponens (Active Component) lehetőséget, hogy a teljes geometria aktív legyen, ne csak az újonnan létrehozott komponens. Valamint itt lehet paraméterezni a geometria méreteit és egymáshoz képesti helyzetét, tehát például a vasmag mozgásának figyelembevételét.

Az ANSYS Discovery AIM elindítását követően válasszuk az Electromagnetics lehetőséget. Ezt követően a szoftver végigvezet minket a teljes szimuláción, így a szimuláció minden lépése szintén nem kerül részletezésre.

A geometria importálását követően a feladat típusa Electromagnetic, a forrás Applied current és DC. A feladat termikus viselkedése Constant temperature és opcióként válasszuk ki az erő (Compute force) és induktivitás (Compute inductance) számítást. Majd legvégül válasszuk a Create surround automatically opciót. Ez a lehetőség akkor fontos, ha a méretek vagy pozíció változni fog a szimuláció során.

A feladat elkészítése után a diszkretizálás következik. A hálót a Mesh/Create Mesh menü segítségével tudjuk elkészíteni. A FEMM-ben is van lehetőség a tartományra/peremre megadni a végeselem méretét, de ebben az esetben megfelelő lesz az alapháló. A hálózást követően az Analyzis/Analyse menüvel tudjuk elindítani a megoldót. A Discovery AIM
Az eredményeket a Analyzis/View Results menü segítségével tudjuk megjeleníteni. Az alábbi két ábra egy-egy példa a FEMM-ben elérhető lehetőségekre.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség és az ekvipotenciális vonalak a mágnesszelepben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség vektorok és a mágneses térerősség eloaszlása.

Az utófeldolgozásnál van lehetőség a vizsgált feladatnál kiszámolni különböző mennyiségeket. Ennél a feladatnál a vasmagra ható erő és a tekercs induktivitása a két számítandó mennyiség.
A gerjesztést az anyagparamétereknél definiáltuk, ezért nem számolja a FEMM az induktivitást. Az induktivitás meghatározására a végeselem-módszer esetében legelterjedtebben alkalmazott módszer a mágneses energiából történő meghatározás, mert az könnyen számítható. A mágneses energiából az [math]L[/math] induktivitást a következő képlettel lehet meghatározni:
[math]L=\frac{2\cdot W_{\text{m}}}{I^2}[/math],

ahol [math]W_{\text{m}}[/math] a teljes rendszer mágneses energiája, [math]I[/math] a gerjesztőáram. Az induktivitás meghatározásához először meghatározzuk a mágneses energiát (Magnetic field energy), amit a FEMM segítségével számolunk. Ehhez az összes tartományt kijelüljük, majd az integrálás (Integrate menü) ablakban kiválasztjuk a mágneses energiát. Az így kapott értéket behelyettesítve kapjuk az tekercs induktivitását a vasmag adott pozíciójában.
A vasmagra ható erőt felületi és görbére vett ingerálás segítségével is meghatározható. Felületi integrálás esetében azt a tartományt (vasmag) kell kijelölni, ahol szeretném az erőt meghatározni. Azonban az integrálásnál mindkét esetben a Maxwell-féle feszültségtenzorral (Force via Weighted Stress Tensor) kell számolni.

Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség és az ekvipotenciális vonalak a mágnesszelepben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség vektorok és a mágneses térerősség eloaszlása.
A szimulációval kapott eredmények.
Szoftver Maxwell 2D FEMM
Induktivitás [[math]\text{mH}[/math]] 51,911 51,821
Erő [[math]\mu\text{N}[/math]] 88,603 74,53
A szimulációval kapott eredmények.
Szoftver Maxwell 3D Discovery AIM
Induktivitás [[math]\text{mH}[/math]] 51,812 51,985
Erő [[math]\mu\text{N}[/math]] 63,29 45,037

A FEMM esetében hosszú és fáradságos mindig újrarajzolni a geometriát, ahhoz, hogy vizsgálható legyen a két számolt mennyiségek a vasmag pozíciójának függvényében (De természetensen kézzel, egyesével is megoldható.). Ehelyett célszerűbb ezt egy szkript (Lua - ez a FEMM beépített programozási nyelve; Scilab; GNU Octave - ezek szabadon hozzáférhetőek) segítségével megoldani. Az eredeti feladaton annyit kell ehhez módosítani, hogy a Vasmag mint tartomány és annak vonalai, pontjai egy csoportban (In Group) legyenek. Majd ez a csoport már egyszerre kijelölhető a mi_selectgroup(csoport száma) paranccsal és az mi_movetranslate(dr,dz) paranccsal elmozgatható egy újabb pozicíóba. A vasmag elmozgatásából kapott eredményeket a lenti kép mutatja.

InductionHeating OhmicLoss DiscoveryAIM.png

A kétdimenziós szimulációval kapott eredmények összehasonlítása.
A kétdimenziós szimulációval kapott eredmények összehasonlítása.

InductionHeating OhmicLoss DiscoveryAIM.png

A tekercs körül kialakuló mágneses térerősség (ANSYS Discovery AIM). Az örvényáram veszteség az öntöttvas rúd felületén (ANSYS Discovery AIM).

Irodalomjegyzék

  1. https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif