1. lecke példája

From Maxwell
Revision as of 14:22, 5 July 2019 by Marcsa (talk | contribs) (Példa megoldása)

Jump to: navigation, search

Üzemanyag befecskendező mágnesszelep

Injector3.gif

Pelda ResultsB.png

Az üzemanyag befecskendező működés közben. [1] Az üzemanyag befecskendezőnél a B vektorok a szolenoid bekapcsolását követően.

A feladat célja

A hallgató megismerje a végeselem-módszer főbb lépéseit, mint a modell előkészítése (geometria elkészítése vagy importálása), anyagparaméterek, peremfeltételek és gerjesztés megadása az üzemanyag befecskendező szolenoidjának szimulációján keresztül.

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • A sztatikus mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés megadásához);
  • A geometria elkészítéséhez CAD rendszer ismerete (háromdimenziós esetben).

A feladat

A feladat geometrijának keresztmetszete és méretei.

A vizsgált feladat (ha elhanyagoljuk a bekapcsoláskor fellépő átmeneti állapotot) állandósult állapotban sztatikus mágneses feladatnak tekinthető. A vasmag mozgásának (szelep nyitása / zárása) hatását is ennek megfelelően vizsgáljuk, vagyis minden pozícióhoz tartozik egy-egy szimuláció. Erre a különböző szoftverek más és más megoldást adnak (szkript, paramétervizsgálat). A mágnesszelep megoldása itt a FEMM és az ANSYS Discovery AIM Student szoftverekkel kerül bemutatásra, ezzel a féléves feladat elkészítéséhez is segítséget nyújtva.

A feladatban szereplő anyagok:

  • Vasmag: Nemlineáris mágnesezési görbével rendelkező acél (Steel1008);
  • Tekercs: Anyaga réz (Copper) és 2000 menetes (Number of Conductors). Az áramerősség (Current) 0,2 A;
  • Lezárás: Levegő (Air).

A feladat a mágnesszelep induktivitásának és a vasmagra ható erőnek a meghatározása. Első lépésként ajánlott a szimulációt validálni a táblázatban megadott értékekkel, amikor a vasmag a szolenoid közepében van. Majd ezt követően érdemes vizsgálni a két mennyiséget a vasmag pozíciójának függvényében.

Példa megoldása

A következőkben a mágnesszelep megoldása és az eredmények kiértékelése kerül bemutatásra.

Finite Elemenet Method Magnetics ANSYS Discovery AIM
A FEMM szoftver használatához segítséget nyújt a következő két videó:

A nacionalizmus gyerekbetegség, az emberiség kanyarója.

A Discovery AIM szoftver használatához segítséget nyújt a következő három videó:
A FEMM kétdimenziós feladatok (síkbeli vagy hengerszimmetrikus) megoldására alkalmas. A vizsgált példa hengerszimmetrikus mágneses feladat. Ezért a Create a new problem ablakban a Magnetics Problem feladattípust kell választani. Ezt követően érdemes elsőnek a Problem menüre kattintva megadni a feladat típusát (Problem Type - Axisymmetric), a hossz mértékegységét (Length Units - Milimeters). A többi paraméter maradhat az alapbeállítás, de például frekvenciatartománybeli (harmonikus) feladat esetében itt lehet specifikálni a gerjesztés frekvenciáját.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A geometria elkészítésénél először a pontokat, majd a különböző tartományokat határoló vonalakat kell definiálni. A pontok a kurzor segítségével is elhelyezhetők, azonban ennek pontossága függ a rácspont sűrűségétől. Ezért célszerűbb a tabulátort (Tab) használni, ahol pontosan megadható a pont két koordinátája. Jelen (hengerszimmetrikus) esetben az a két koordináta az r (vízszintes) és a z (függőleges) koordináta. Majd a pontok a kurzor segítségével összeköthetőek, miután az Operation/Node menüről átváltunk az Operation/Segment műveletre. Az ábrán látható elrendezést kell kapnunk, ami már tartalmazza a lezárást is (100mm x 50mm).
A következő lépés az anyagok (Properties/Materials) és a feladatnál használt peremfeltétel (Properties/Boundary) definiálása. Ennél a példánál az anyagparaméternél adjuk meg a gerjesztést is mint áramsűrűség (Source Current Density). A [math]J[/math] áramsűrűséget a következő összefüggésel tudjuk meghatározni:
[math]J=\frac{N\cdot I}{A}[/math],

ahol [math]N[/math] a menetszám, [math]I[/math] az egy menetre jutó áramerősség és [math]A[/math] a tekercs keresztmetszete. A gerjesztés másik megadási módja a Properties/Circuits menünél deifinálni a tekercset, majd megadni hozzá a menetszámot. Ebben az esetben a FEMM automatikusan számolja a tekercshez kapcsolódó paramétereket (pl. induktivitás, fluxuskapcsolódás). A peremfeltétel (Properties/Boundary) ennél a példánál a feladat megoldásához használt [math]\vec{A}[/math] mágneses vektorpotenciál közvetlen előírása (Prescribed A) a peremen (Dirichlet vagy elsőfajú). A vektorpotenciál értéke nulla a peremen, ami annyit jelent, hogy a [math]\vec{B}[/math] mágneses fluxussűrűségnek csak tangenciális irányú komponense van.
Ha definiáltuk az anyagokat és a peremfeltételt az Operation/Block menüre váltva megadjuk a feladat tartományait. Majd a tartományok (Block) vagy peremek (Segment) jobb egérgombbal történő kijelölése utána a Space lenyomásával tudjuk definiálni a tartományhoz / peremhez tartozó anyagot / peremfeltételt.
Ha mindezzel megvagyunk mentsük el a feladatot.

A feladat elkészítése után a diszkretizálás következik. A hálót a Mesh/Create Mesh menü segítségével tudjuk elkészíteni. A FEMM-ben is van lehetőség a tartományra/peremre megadni a végeselem méretét, de ebben az esetben megfelelő lesz az alapháló. A hálózást követően az Analyzis/Analyse menüvel tudjuk elindítani a megoldót.

Az eredményeket a Analyzis/View Results menü segítségével tudjuk megjeleníteni. Az alábbi két ábra egy-egy példa a FEMM-ben elérhető lehetőségekre.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség és az ekvipotenciális vonalak a mágnesszelepben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség vektorok és a mágneses térerősség eloaszlása.

Az utófeldolgozásnál van lehetőség a vizsgált feladatnál kiszámolni különböző mennyiségeket. Ennél a feladatnál a vasmagra ható erő és a tekercs induktivitása a két számítandó mennyiség.
A gerjesztést az anyagparamétereknél definiáltuk, ezért nem számolja a FEMM az induktivitást. Az induktivitás meghatározására a végeselem-módszer esetében legelterjedtebben alkalmazott módszer a mágneses energiából történő meghatározás, mert az könnyen számítható. A mágneses energiából az [math]L[/math] induktivitást a következő képlettel lehet meghatározni:
[math]L=\frac{2\cdot W_{\text{m}}}{I^2}[/math],

ahol [math]W_{\text{m}}[/math] a teljes rendszer mágneses energiája, [math]I[/math] a gerjesztőáram. Az induktivitás meghatározásához először meghatározzuk a mágneses energiát (Magnetic field energy), amit a FEMM segítségével számolunk. Ehhez az összes tartományt kijelüljük, majd az integrálás (Integrate menü) ablakban kiválasztjuk a mágneses energiát. Az így kapott értéket behelyettesítve kapjuk az tekercs induktivitását a vasmag adott pozíciójában.
A vasmagra ható erőt felületi és görbére vett ingerálás segítségével is meghatározható. Felületi integrálás esetében azt a tartományt (vasmag) kell kijelölni, ahol szeretném az erőt meghatározni. Azonban az integrálásnál mindkét esetben a Maxwell-féle feszültségtenzorral (Force via Weighted Stress Tensor) kell számolni.

Az üzemanyag befecskendező mágnesszelep geometriájának keresztmetszete.
Az üzemanyag befecskendező mágnesszelep geometriájának keresztmetszete.
Az ANSYS Discovery AIM (ANSYS Integrated Multiphysics) szoftverben sztatikus mágneses, elektrosztatika és frekvenciatartománybeli mágneses feladatokat lehet vizsgálni. Elsősorban a tervezőknek ajánlja az ANSYS, a koncepció fázisban lévő fejlesztéseknél egy-egy gyors ellenőrzéshez. De ettől függetlenül jól alkalmazható a lehetőségeinek megfelelően tetszőleges feladat megoldására is (ahogy ezt későbbi feladatoknál látjuk majd).
A Discovery AIM-nél a geometria elkészítéséhez a SpaceClaim áll rendelkezésre vagy geometria importálására van lehetőség.

A feladat geometriájának elkészítése itt nem kerül részletezésre, csak a gerjesztéshez fontos lépések kerülnek részletezésre. Először egy síkor hozunk létre a tekercs-vasmag elrendezés keresztmetszetében a Design - Plane ikon segítségével. Ezt követően a baloldalon található Szerkezet (Structure) ablakban a Tervkomponensre (struktúra fa gyökérébe) kattintva hozzáadunk egy új komponenst (New Component). Az új komponens tulajdonságai között (új komponensre kattintva Tulajdonságok (Properties)) a Topológia megosztása (Shared Topology) legyen Megosztásra (Shared) állítva. Ha ezt megtettük, a tekercset húzzuk bele az új komponensbe. Majd a következő lépésként rajzoljuk meg a tekercs keresztmetszetét felhasználva az elrendezés metszeti nézetét. Ha megrajzoltuk a tekercs keresztmetszetét, annak is az új komponens fájában kell lennie. Ennek köszönhetően az ANSYS Discovery AIM a megrajzolt felületet a tekercs keresztmetszeteként fogja kezelni, így erre a felületre előírható a gerjesztés. Végül a Tervkomponensre kattintva jobbegérgombbal válasszuk ki az Aktív komponens (Active Component) lehetőséget, hogy a teljes geometria aktív legyen, ne csak az újonnan létrehozott komponens. Valamint itt lehet paraméterezni a geometria méreteit és egymáshoz képesti helyzetét, tehát például a vasmag mozgásának figyelembevételét.

Az ANSYS Discovery AIM elindítását követően válasszuk az Electromagnetics lehetőséget. Ezt követően a szoftver végigvezet minket a teljes szimuláción, így a szimuláció minden lépése szintén nem kerül részletezésre.

A geometria importálását követően a feladat típusa Electromagnetic, a forrás Applied current és DC. A feladat termikus viselkedése Constant temperature és opcióként válasszuk ki az erő (Compute force) és induktivitás (Compute inductance) számítást. Majd legvégül válasszuk a Create surround automatically opciót. Ez a lehetőség akkor fontos, ha a méretek vagy pozíció változni fog a szimuláció során.

A első beállításokat követően az anyagokat kell definiálni az egyes tartományokra. Háromdimenziós feladatnál fontos, hogy térfogatokra (Volume) definiáljuk az anyagtulajdonságokat. Majd a Finish gombra kattintva létrehozzuk a feladatot. Azonban a Physics beállításainál még definiálni kell hol számoljuk az erőt és a gerjesztés megadása is hiányzik. Az erő számításánál a vasmagot kell kijelölni, a számításimód a Virtual (Virtuális munka elve). Majd ezt követően a gerjesztés kell definiálni a tekercsbe berajzolt keresztmetszetre. Itt az áramerősséget és a menetszámot kell megadni. A keresztmetszet kiválasztásához javasolt a lezárás és a tekercs elrejtése (Hide Body).

Ha ezekkel készen vagyunk és mindent (megfelelően) definiáltunk, akkor a piros mező felkiáltójellel átvált sárga mezőre, benne egy fekete villámmal. Már csak a megoldás van hátra (Solve Physics). A megoldó beállításai maradhatnak az alapbeállításon, illetve a diszkretizálással se kell törődni, mert a megoldó adaptívan finomítja a felbontást.

Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség a mágnesszelepben.
Az üzemanyag befecskendező mágnesszelep geometriája FEMM-ben.
A mágneses fluxussűrűség vektorok és a mágneses térerősség eloaszlása.
A szimulációval kapott eredmények.
Szoftver Maxwell 2D FEMM
Induktivitás [[math]\text{mH}[/math]] 51,911 51,821
Erő [[math]\mu\text{N}[/math]] 88,603 74,53
A szimulációval kapott eredmények.
Szoftver Maxwell 3D Discovery AIM
Induktivitás [[math]\text{mH}[/math]] 51,812 51,985
Erő [[math]\mu\text{N}[/math]] 63,29 45,037

A FEMM esetében hosszú és fáradságos mindig újrarajzolni a geometriát, ahhoz, hogy vizsgálható legyen a két számolt mennyiségek a vasmag pozíciójának függvényében (De természetensen kézzel, egyesével is megoldható.). Ehelyett célszerűbb ezt egy szkript (Lua - ez a FEMM beépített programozási nyelve; Scilab; GNU Octave - ezek szabadon hozzáférhetőek) segítségével megoldani. Az eredeti feladaton annyit kell ehhez módosítani, hogy a Vasmag mint tartomány és annak vonalai, pontjai egy csoportban (In Group) legyenek. Majd ez a csoport már egyszerre kijelölhető a mi_selectgroup(csoport száma) paranccsal és az mi_movetranslate(dr,dz) paranccsal elmozgatható egy újabb pozicíóba. A vasmag elmozgatásából kapott eredményeket a lenti kép mutatja.

Discovery AIM
A kétdimenziós szimulációval kapott eredmények összehasonlítása.
A kétdimenziós szimulációval kapott eredmények összehasonlítása.
A háromdimenziós szimulációval kapott eredmények összehasonlítása.
A háromdimenziós szimulációval kapott eredmények összehasonlítása.

Irodalomjegyzék

  1. https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif