Electrical Machines
Villamos gépek | |
Oktató
|
További oktatók:
|
A kurzus leírása
Ezen az oldalon nem egy kurzushoz, hanem a Széchenyi István Egyetemen oktatott villamos gépekkel kapcsolatos alapkézéses és szakképzéses tárgyaimhoz tartozó előadások anyagai találhatóak.
Angol és magyar nyelven is sok kiválló szakkönyv, jegyzet létezik, ami részletesen taglalja a villamos gépek működését. Ezekre építve a célom az volt az előadásokban, hogy minél szemléletesebben bemutassam a gépekben lejátszodó jelenségeket a működésük megértéséhez.
Fontos megjegyezni, hogy nem egy jegyzetet készítettem, így sok esetben a megértéshez az előadáson elhangzottak is szükségesek. Emellett pedig angolul vannak az előadások, hogy a hallgatók megismerkedjenek a kurzusok során a témához tartozó angol elnevezésekkel, kifejezésekkel.
Villamos gépek (GKNB_AUTM020, GKLB_AUTM020)
There will be 2-3 one hour lectures per week, with the specific days varying from week-to-week. The lecture days for each week will be announced in class and posted here at least 1 week in advance.
Date | Topic | Reading | Homework |
Week 1 30 Sep |
Introduction and review
|
|
Template:Cds131 fa19 pdf Out: 2 Oct |
Week 2 7 Oct |
Linear I/O systems
|
|
Template:Cds131 fa19 pdf Out: 9 Oct |
Week 3 14 Oct |
Reachability
|
|
Template:Cds131 fa19 pdf Out: 16 Oct |
Week 4 21 Oct |
State feedback
|
|
Template:Cds131 fa19 pdf Out: 23 Oct |
Week 5 28 Oct |
Observability and state estimation
|
|
Template:Cds131 fa19 pdf Out: 30 Oct |
Week 6 4 Nov |
Frequency domain analysis
|
|
Template:Cds131 fa19 pdf Out: 6 Nov |
Week 7 11 Nov |
Uncertainty and robustness
|
|
Template:Cds131 fa19 pdf Out: 13 Nov |
Week 8 18 Nov |
Stabilization
|
|
Template:Cds131 fa19 pdf Out: 20 Nov |
Week 9 25 Nov |
Fundamental limits
|
|
Template:Cds131 fa19 pdf Out: 27 Nov
Template:Cds131 fa19 pdf (Caltech only) |
Week 10 6 Dec |
Review for final | Final Out: 6 Dec
Template:Cds131 fa19 pdf (Caltech only) |
Grading
The final grade will be based on homework sets, a midterm exam, and a final exam:
- Homework (70%): Homework sets will be handed out weekly and due on Wednesdays by 2 pm either in class or in the labeled box across from 107 Steele Lab. Each student is allowed up to two extensions of no more than 2 days each over the course of the term. Homework turned in after Friday at 2 pm or after the two extensions are exhausted will not be accepted without a note from the health center or the Dean. MATLAB/Python code and SIMULINK/Modelica diagrams are considered part of your solution and should be printed and turned in with the problem set (whether the problem asks for it or not).
- The lowest homework set grade will be dropped when computing your final grade.
- Final exam (30%): The final exam will be handed out on the last day of class (4 Dec) and due at the end of finals week. It will be an open book exam and computers will be allowed (though not required).
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor, but you cannot consult homework solutions from prior years and you must cite any use of material from outside references. All solutions that are handed in should be written up individually and should reflect your own understanding of the subject matter at the time of writing. Any computer code that is used to solve homework problems is considered part of your writeup and should be done individually (you can share ideas, but not code).
No collaboration is allowed on the final exam.
Course Text and References
The primary course texts are
- [FBS2e] K. J. Astrom and Richard M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, Second Edition*, 2019.
- [FBS2s] Richard M. Murray, Template:Cds131 fa19 pdf, 2019. (Updated 31 Oct 2019)
- [DFT] J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, Dover, 2009 (originally published by Macmillan, 1992).
- [OBC] R. M. Murray, "Optimization-Based Control", 2010. Online access
- [Son98] E. D. Sontag, Mathematical Control Theory, Springer, 1998. Online access
* Please make sure to use the second edition [FBS2e].
The following additional references may also be useful:
- [Lew03] A. D. Lewis, A Mathematical Approach to Classical Control, 2003. Online access.
Note: the only sources listed here are those that allow free access to online versions. Additional textbooks that are not freely available can be obtained from the library.