Feladat 2

From Maxwell
Jump to: navigation, search

Feladat #2 - Sztatikus mágneses

Oktató

  • Marcsa Dániel (óraadó)
  • Előadás: -
  • Fogadóóra: egyeztetés alapján

További oktatók:

  • -
  • Fogadóóra: -.

A feladat célja

A hallgatók elsajátítsák az elektromágneses térszámítás alapjait, főbb lépéseit, valamint gyakorlatot szerezzen az eredmények kiértékelésében a FEMM vagy Agros2D vagy az Ansys Maxwell szoftver segítségével. Ezen túl a nemzetközi elvárásoknak megfelelő Műszaki Jelentés (Technical Report) írásában is gyakorlatot szerezzen.

A feladat egy szelep mozgatásához használt lineáris aktuátor adott pozicíójánál meghatározni a mozgó részére ható erőt és az induktivitást.

Injector3.gif

Ábra 1. - Az üzemanyag befecskendező működés közben. [1]

A feladat megoldásához szükséges ismeretek

  • A végeselem-módszer lépései;
  • A sztatikus mágneses térre vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés és peremfeltétel megadásához);
  • Az Ansys Electronics Desktop Student szoftver alapszintű kezelése.

A feladat

A feladat két részből áll, a szimulációból és az összefoglaló elkészítéséből.

Leadási határidő: nappali - 2020. október 09., 23:59 / távoktatás - 2021. december 19. 23:59
Leadás formája: A szimulációs fájlt (*.aedt) tömörítve (.zip formátumban).
Az összefoglalót PDF formátumban. A színes ábrákat úgy kell elkészíteni, hogy fekete-fehérben kinyomtatva is világos legyen a tartalmuk az olvasó számára.
Benyújtás nyelve: Magyar
Benyújtás helye: A Moodle rendszerben kiírt feladatnál.
Késői benyújtás: Minden megkezdett nap után 5% levonás az elért eredményből (azaz pl. 5 nap késés után 100%-os leadandóra már csak max. 100% - 5x5% = 75%-ot lehet szerezni).
Értékelés: 0 – 50% - Elégtelen (1)
51 – 60% - Elégséges (2)
61 – 70% - Közepes (3)
71 – 85% - Jó (4)
86 – 100% - Jeles (5)
A formai követelmények tekintetében az alábbi linken elérhető útmutatót/sablont kell használni.

Feladat I. része

A mágnesszelep mozgó részére ható erő és az induktivitás számítása végeselem-módszerrel

A kapott sorszám alapján a feladat geometriájának méreteit a következő táblázatban találja: Feladat #2 méretei.

A feladat: meghatározni a mozgó részre ható erőt és a tekercs induktivitását.

  • A tekercs menetszáma N=900
    az 1. változat és N=450
    a 2-es és 3-as változat esetében.
  • A tekercs gerjesztése I=2 A
    az összes esetben.

Az állandó mágnest tartalmazó esetben tetszőlegesen eldönthető, hogy melyik mágnest használja a megoldáshoz:

A választható állandó mágnesek.
Mágnes AlNiCo5 AlNiCo9 NdFeB30 NdFeB35 SmCo5 Sm2Co17
Br [T]
1,28 1,06 1,1 1,23 0,9 1,03
Hc [kA/m]
51 119 838 890 660 750

Ha szükséges a relatív permabilitás megadása, akkor azt a konstitúciós relációval meghatározza meg.

A feladatban szereplő alumínium öntvénynek a relatív permeabilitása μr=1

.

A vasmagban a légrés minden esetben 0,3 mm

.

Az induktivitásta mágneses energia segítségével tudja meghatározni:

L=2WmI2

,

ahol Wm

a mágneses energia (részletesen lásd lentebb és a videóban).

Elvégzendő feladatok

  • A megadott paraméterek alapján elkészíteni a hengerszimmetrikus (axisymmetric)) feladat geometriáját az Ansys Electronics Desktop Student szoftverben;
  • Az anyagtulajdonságok, a gerjesztés és a peremfeltételek megadása;
  • A FEM szimuláció futtatása;
  • Az eredmények kiértékelése.

A táblázatban található méretek jelentését az alábbi ábrák mutatják. A táblázatban a 2. oszlop jelöli a változat számát.

01 SolenoidActuator.png

02 MovingCoilActuator.png

Feladat #2 - 1. változat. Feladat #2 - 2. változat.

03 MovingMagnetActuator.png

04 Materials.png

Feladat #2 - 3. változat. Feladat #2 - anyagok.

A feladatban használt acél mágnesezési görbéjét az Ábra 1. mutatja, valamint a következő táblázatban elérhetőek a görbe pontjai: B-H görbe.

05 AISI1020 BHcurve.png

Ábra 2. - AISI 1020 acél mágnesezési görbéje.

Szoftverek használatának bemutatása

Az 3. ábrán látható feladat megoldásán keresztül röviden bemutatom az előadáson és az önálló feladat során használandó szoftvereket. A feladathoz készült videók segítségével elsajátítható a feladat beállítása, az anyagtulajdonságok, a peremfeltételek és a gerjesztés megadása. Majd a megoldást követően a térváltozók megjelenítése és az erő valamint az induktivitás meghatározása.
A geometria elkészítéséhez a Feladat 1 videói nyújtanak segítséget.

A mintdapéldához nincs a levegő berajzolva. Ennek méretei a videókban megtalálhatóak, de akár gyakorlásképpen ellenőrizhető, hogyan befolyásolja az erő és induktivitás értékét (az eredményt) a lezárás mérete.

06 Sztatikusmagneses Mintafeladat.png

Ábra 3. - A mintapélda és geometriai méretei.
A szimulációval kapott eredmények.
Szoftver FEMM Agros2D Maxwell 2D Maxwell 3D
Erő [N] -4,854 -4,853 -4,853 -4,.833
Induktivitás [mH] 9,75 9,765 9,773 9,77

Videók a szoftverek használatához

Induktivitás meghatározása

Az induktivitás meghatározáshoz használja a mágneses energián alapuló képletet:

L=2WmI2

,

ahol Wm

a mágneses energia és I
a tekercs árama (a fenti feladatoknál 2 A
).
Az induktivitás meghatározása során a mágnes ne szerepeljen (Br=0 T
és Hc=0 A/m
) a feladatban!

A fenti példáknál van olyan eset, ahol több tekercs van a feladatban. Ebben az esetben először a következő induktivitás mártix elemeit kell meghatározni

[U1U2]=[L11M12M21L22][I1I2]

.

A tekercsek öninduktivitásának (L11

és L22
) meghatározásához, mindig csak egy tekercset kell gerjeszteni, majd a fenti képlettel meghatározni az induktivitást.

A kölcsönös induktivitás (M12=M21=M

) meghatározásához a csatolt áramkörben tárolt energia képletét kell használni:

Wm=12L11I1+12L22I2±MI1I2

.

Ebben az esetben mindkettő tekercs gerjesztve van, máskülönben (ha I1=0

vagy I2=0
) visszakapjuk a fenti képletet.
Kölcsönös induktivitás előjele:
Pozitív (+): Mindkettő áram iránya azonos;
Negatív (-): A két áram iránya ellentétes.

A megadott feladatok esetében a két tekercs sorba van kötve. A fenti mátrix redukálásához és a tényleges induktivitáshoz a következő összefüggést kell alkalmazni:

Lsoros=(L11+M12)+(M21+L22)

Megjegyzés: Nagyon fontos ismerni a használt képletek, módszerek korlátait. A fenti módszer csak lineáris rendszerek esetében ad helyes eredményt. Mindegyik feladatban található vasmag, amelynek nemlineáris a mágnesezési karakterisztikája. Azonban a feladatok esetében a mágneses fluxussűrűség a nemlineáris vasban nem haladja meg az 1 T

értéket, tehát a feladat még jó közelítéssel lineárisnak tekinthető.

Feladat II. része

A műszaki jelentés elkészítése és leadása a Moodle rendszerben PDF formátumban.
A műszaki jelentés a következő linken elérhető: Word; PDF.

Hivatkozások

  1. Jump up https://upload.wikimedia.org/wikipedia/commons/2/29/Injector3.gif