Difference between revisions of "Mágneses kör"
(→A feladat megoldásához szükséges ismeretek) |
(→A feladat megoldásához szükséges ismeretek) |
||
Line 38: | Line 38: | ||
|- | |- | ||
| style="background: #D5E0EE;" | '''Hónap''' | | style="background: #D5E0EE;" | '''Hónap''' | ||
− | | '''Nap''' | + | | style="background: #D5E0EE;" | '''Nap''' |
− | | '''Hét''' | + | | style="background: #D5E0EE;" | '''Hét''' |
− | | '''Téma''' | + | | style="background: #D5E0EE;" | '''Téma''' |
− | | '''Házi feladat''' | + | | style="background: #D5E0EE;" | '''Házi feladat''' |
− | | '''Infó''' | + | | style="background: #D5E0EE;" | '''Infó''' |
|- valign=top | |- valign=top | ||
| rowspan=3 style="text-align: center;" | Február | | rowspan=3 style="text-align: center;" | Február | ||
− | | 11. | + | | style="background: #ACC0DD;" | 11. |
− | | 1. | + | | style="background: #ACC0DD;" | 1. |
− | | [https://drive.google.com/file/d/1_ts7I08AS1rv-gjUmKuy7x6jeUzlovCh/view?usp=sharing ''Elméleti alapok ismétlése (Villamosságtan, Elektrodinamika)'' - ''Opcionális'' | + | | style="background: #ACC0DD;" | [https://drive.google.com/file/d/1_ts7I08AS1rv-gjUmKuy7x6jeUzlovCh/view?usp=sharing ''Elméleti alapok ismétlése (Villamosságtan, Elektrodinamika)''] |
− | + | | style="background: #ACC0DD;" | - | |
− | + | | style="background: #ACC0DD;" | '''Opcionális''' | |
|- valign=top | |- valign=top | ||
<!-- column 3 of this row occupied by cell F (to the left) --> | <!-- column 3 of this row occupied by cell F (to the left) --> |
Revision as of 17:06, 19 March 2022
Mágneses körök - Fejlesztés alatt | |
| |
Oktató
|
További oktatók:
|
Contents
[hide]A feladat célja
Ennek a lapnak a célja a mágneses körök ekvivalensének rövid bemutatása és a vele való számítás ismertetése. A mágneses kör számítása több példán keresztül kerül bemutatásra. Az eredmények ellenőrzése végeselem-módszerrel történik, azon belül ANSYS Maxwell szoftverrel. A végeselem-módszerrel megoldott példák közül néhányhoz videó is készül a megoldás menetéről.
Az itt bemutatott példák közül az FGY-vel jelölt példák Fodor György - Villamosságtani példatár IV., Mágneses terek - Térbeli áramlás, Tankönyvkiadó, 1963 könyvből származnak.
A feladat megoldásához szükséges ismeretek
- Sztatikus mágneses terek;
- A végeselem-módszer lépései és annak elméleti háttere.
Hónap | Nap | Hét | Téma | Házi feladat | [Collapse] Infó |
Február | 11. | 1. | Elméleti alapok ismétlése (Villamosságtan, Elektrodinamika) | - | Opcionális |
18. | 2. | Transzformátor - Elmélet | Házi feladat - I. | - | |
25. | 3. | Transzformátor - Gyakorlat | - | - | |
Március | 04. | 4. | Villamos forgógépek alapjai | - | 1. zárthelyi |
18. | 5. | Egyenáramú gép - Elmélet | Házi feladat - II. | - | |
25. | 6. | Egyenáramú gép - Gyakorlat | - | - | |
Április | 01. | 7. | Váltakozó áramú mezők | Házi feladat - III. | - |
08. | 8. | [ Aszinkron gép - Elmélet] | - | [ 2. zárthelyi] Terhelt állapot Jelleggörbéje | |
22. | 9. | Aszinkron gép - Gyakorlat | - | - | |
29. | 10. | [ Szinkron gép - Elmélet] | Házi feladat - IV. | [ 3. zárthelyi] Működés szemléltetése | |
Május | 06. | 11. | Szinkron gép - Gyakorlat | - | - |
13. | 14. | [ Villamos gépek és hajtások EMC-s problémái] | - | Látókör szélesítése |
A mágneses kör
A feladat részletes definiálása a videóban is megtalálható. Emellett készítettem egy háromdimenziós ábrát az elrendezés könnyebb elképzeléséhez és annak méretekkel ellátott keresztmetszetét. A feladat az eltolási szimmetria (Z
A feladat megoldásához a Laplace-egyenletet oldjuk meg
- −divεgradφ=0
- −divεgradφ=0
ahol φ
- ΓD1=0 V,
- ΓD2=100 V,
- ΓN=∂φ∂n=0(homogén Neumann-peremfeltétel).
- ΓD1=0 V
A szimulációval kapott eredmények
Az előbb megadott parciális differenciálegyenlet és peremfeltételekkel előálló feladat megoldásával a következő táblázatban összefoglalt eredmények születtek a kapacitás értékére. A Matlab PDE Toolbox megoldása az előadásból (Gyimóthy Szabolcstól) származik. Gyakorlatilag az összes szoftver azonos megoldásra vezetett. Ilyen szempontból sokkal érdekesebb a végeselemek száma. Az ANSYS Maxwell és 2D Extarctor esetében jelentősen kevesebb a végeselemek száma, mint a többi esetben. Ennek oka az adaptív hálósűrítés[1], amit a két Ansys szoftver alkalmaz az elektrosztatika példák esetében. Ennek köszönhetően ott lesz sűrűbb a felbontás, ahol az szükséges. Az adaptív hálósűrítésre mutat példát a jobb oldali ábra. Alatta pedig a feladat teljes tartományára számított (globális) hiba változása látható.
Matlab PDE Toolbox | ONELAB | Maxwell 2D | 2D Extractor | FEMM | Agros2D | |
---|---|---|---|---|---|---|
Végeselemek száma | 2944 | 2598 | 740 | 258 | 7885 | 2432 |
Kapacitás [pF/m ]
|
173.51 | 173.78 | 173.33 | 173.29 | 173.70 | 173.64 |
Mindegyik esetben lineáris háromszög elemekkel lett felbontva a vizsgált tartomány. A lineáris végeselemekből következik, hogy a végeselemen belül a φ
- Az elektromos térerősség a vizsgált elrendezésben.
Legvégül egy-egy ábra az elektromos skalárpotenciálról és az elektromos térerősség vektorairól. Az elektromos skalárpotenciál ábráján jól láthatóak a vezető körül kialakuló ekvipotenciális vonalak. A vektorok esetében jól látható a homogén Neumann-peremfeltétel teljesülése a szimmetrisík mentén.
Az elektromos skalárpotenciál értéke az elrendezésben. | Az elektromos térerősség vektorai az elrendezésben. |
References
- Jump up ↑ Gyimóthy Sz.: Adaptív automatikus hálógenerálás a végeselem módszerhez, PhD disszertáció, 2003.