Feladat 5
Feladat #5 - Stacionárius hőáramlás | ||
Oktató
|
További oktatók:
|
A feladat célja
A hallgatók elsajátítsák az elektromágneses térszámítás alapjait, főbb lépéseit, valamint gyakorlatot szerezzen az eredmények kiértékelésében a FEMM vagy az Agros2D szoftver segítségével. Ezen túl a nemzetközi elvárásoknak megfelelő Műszaki Jelentés (Technical Report) írásában is gyakorlatot szerezzen.
A feladat egy háromfázisú kábel (lásd Feladat 4) egyik vezetőjében kialakuló hőmérsékleteloszlás meghatározása a vezetékben létrejövő veszteség ismeretében.
A feladat megoldásához szükséges ismeretek
- A végeselem-módszer lépései;
- A stacionárius hőáramlásra vonatkozó elméleti ismeretek (anyagok definiálásához, gerjesztés és peremfeltétel megadásához);
- A FEMM vagy Agros2D szoftver alapszintű kezelése.
A feladat
A feladat két részből áll, a szimulációból és az összefoglaló elkészítéséből.
Leadási határidő: | nappali - 2020. december 5. 23:59 / távoktatás - 2020. december 5. 23:59 |
Leadás formája: | A szimulációs fájlt (FEMM - *.feh; Agros2D - *.a2d) tömörítve (.zip formátumban). Az összefoglalót PDF formátumban. A színes ábrákat úgy kell elkészíteni, hogy fekete-fehérben kinyomtatva is világos legyen a tartalmuk az olvasó számára. |
Benyújtás nyelve: | Magyar |
Benyújtás helye: | A Moodle rendszerben kiírt feladatnál. |
Késői benyújtás: | Minden megkezdett nap után 5% levonás az elért eredményből (azaz pl. 5 nap késés után 100%-os leadandóra már csak max. 100% - 5x5% = 75%-ot lehet szerezni). |
Értékelés: | 0 – 50% - Elégtelen (1) |
51 – 60% - Elégséges (2) | |
61 – 70% - Közepes (3) | |
71 – 85% - Jó (4) | |
86 – 100% - Jeles (5) | |
A formai követelmények tekintetében az alábbi linken elérhető útmutatót/sablont kell használni. |
Feladat I. része
Rezisztencia és veszteség számítása végeselem-módszerrel
A kapott sorszám alapján a feladat geometriájának méreteit a következő táblázatban találja: Feladat #4 méretei.
A feladat: meghatározni a hőmérsékleteloszlást az elrendezés tetszőlegesen választott vezetőjében a veszteség 50 Hz-en és 500 Hz-en számolt értékének esetére.
Anyag | Réz | PVC |
---|---|---|
[math]\rho~[\text{kg}/\text{m}^3][/math] | 8960 | 1380 |
[math]c_{\text{P}}~[\text{J}/(\text{kg}\cdot\text{K})][/math] | 383 | 1172 |
[math]\lambda~[\text{W}/(\text{m}\cdot\text{K})][/math] | 401 | 0,2 |
A FEMM szoftver esetében a térfogatra vonatkoztatott hőkapacitást (Volumetric heat capacity) meg kell adni. Ezt a hőkapacitás ([math]c_{\text{P}}[/math]) és a lehet számolni:
[math]c_{\text{PV}} = c_{\text{P}} [/math],
aminek frekvenciatartományban, egy periódusra vett átlaga:
[math]P_{\text{ec}} = \frac{1}{2}\int_{\Omega}\text{Re}\Big\{\sigma\vec{E}\cdot\vec{E}^{*}\Big\}\text{d}\Omega[/math].
A vezető rezisztenciája meghatározható az így kapott örvényáram-veszteséget behelyettesítve az ellenállás képletbe:
[math]R = \frac{2\cdot P_{\text{ec}}}{I^2}[/math],
ahol [math]P_{\text{ec}}[/math] az örvényáram okozta veszteség, [math]I[/math] az áramerősség, [math]R[/math] a rezisztencia.
A [math]z-[/math]irányú hossza a feladatnak minden esetben [math]1\,\text{m}[/math] legyen és a szigetelő (PVC) vastagsága [math]4,2\,\text{mm}[/math]. A fázisok áramai között a fáziseltérés 120 fok.
Elvégzendő feladatok
- A megadott paraméterek alapján elkészíteni a síkbeli (planar) feladat geometriáját a FEMM vagy Agros2D szoftverek valamelyikében;
- Az anyagtulajdonságok, a gerjesztés és a peremfeltételek megadása;
- A FEM szimuláció futtatása;
- Az eredmények kiértékelése, ha a [math]z-[/math]irányú hossz egységnyi ([math]1\,\text{m}[/math]).
Szabadon eldönthető a fázisok gerjesztése!
A táblázatban található méretek jelentését az alábbi ábrák mutatják. A táblázatban a 2. oszlop jelöli a változat számát.
Feladat #4 - 1. változat. | Feladat #4 - 2. változat. |
Feladat #4 - 3. változat. | Feladat #4 - keresztmetszet. |
Szoftverek használatának bemutatása
Az 1. ábrán látható feladat megoldásán keresztül röviden bemutatom az előadáson és az önálló feladat során használandó szoftvereket. A feladathoz készült videók segítségével elsajátítható a feladat beállítása, az anyagtulajdonságok, a peremfeltételek és a gerjesztés megadása. Majd a megoldást követően a térváltozók megjelenítése és a feladathoz kapcsolódó számítandó mennyiségek meghatározása. A feladatban az áramerősség [math]400~\text{A}[/math].
A mintdapéldához nincs a levegő berajzolva. Ennek méretei a videókban megtalálhatóak, de akár gyakorlásképpen ellenőrizhető, hogyan befolyásolja a kapacitás értékét (az eredményt) a lezárás mérete. A fázisok elnevezése balról jobbra haladva [math]L_1[/math] (bal oldali), [math]L_2[/math] (középső), [math]L_3[/math] (jobb oldali).
Ábra 1. - A mintapélda és geometriai méretei (A méretek mm-ben értendőek.). |
Szoftver | FEMM | Agros2D | Maxwell 2D | |
---|---|---|---|---|
Veszteség [[math]\text{W}[/math]] | L1 | 7,76 | 7,77 | 7,93 |
L2 | 9,84 | 9,89 | 10,41 | |
L3 | 7,81 | 7,83 | 8,01 | |
Rezisztencia [[math]\mu\Omega[/math]] | L1 | 97,0 | 97,125 | 98,08 |
L2 | 123,0 | 123,625 | 125,26 | |
L3 | 97,625 | 97,875 | 98,08 |
Videók a szoftverek használatához
- [ FEMM]
- [ Agros2D]
- [ Ansys Maxwell 2D]
A hővezetés differenciálegyenlete[1][2]
A hővezetés általános differenciálegyenletéhez az energimegmaradás tételét a hővezetés jelenségére alkalmazva jutunk.
Vizsgáljuk egy [math]V[/math] térfogatú hővezető közeg energiaegyensúlyát. A térfogatba foglalt közeg:
[math]m = \int_{V}\rho~\text{d}V[/math],
ahol [math]\rho[/math] a sűrűség [[math]\text{kg}/\text{m}^3[/math]].
A tömeg hőmérsékletének [math]\text{d}T[/math] értékkel való növelése [math]\text{d}\tau[/math] idő alatt [math]\text{d}Q[/math] hőmennyiség közlése mellett történik. A hőmérséklet idő szerinti változása
[math]\text{d}T = \frac{\partial T}{\partial \tau}~\text{d}\tau[/math]
egy helyfüggő érték. A felmelegítéshez szükséges hőmennyiség
[math]\text{d}Q = \text{d}\tau\int_{V} c\cdot\rho\cdot\frac{\partial T}{\partial \tau}~\text{d}V[/math],
ahol [math]c[/math] [[math]\text{J}/(\text{kg}\cdot\text{K})[/math]] az anyag helytől függő fajhője.
A közölt hőmennyiség származhat a vizsgált térrészen belül elhelyezkedő hőforrásból ([math]\text{d}Q_1[/math]), vagy érkezhet a vizsgált tartományt határoló felületen keresztül hővezetéssel ([math]\text{d}Q_2[/math]). A két hőmennyiség összege a felmelegítésre fordított hőmennyiséggel egyenlő:
[math]\text{d}Q = \text{d}Q_1 + \text{d}Q_2[/math].
Hőforrásként jelentkezhet a közegben például az elektromos áram hőhatása. A hőforráseloszlás ([math]q_V[/math]) ismeretében a vizsgált [math]V[/math] térrészben [math]\text{d}\tau[/math] idő alatt keletkező hőmennyiség:
[math]\text{d}Q_1 = \text{d}\tau\int_{V} q_V~\text{d}V[/math].
A [math]V[/math] térrészt határoló [math]S[/math] felületen át vezetéssel a térrészbe belépő és az onnan szintén vezetéssel kilépő hőmennyiség eredője, ugyancsak [math]\text{d}\tau[/math] idő alatt:
[math]\text{d}Q_2 = -\text{d}\tau\int_{S} \vec{q}~\text{d}\vec{S}[/math],
ahol [math]\vec{q}[/math] a hőáramsűrűség vektora. Az [math]S[/math] felület normálisát pozitívnak tekintjük, ha a vizsgált térrészből kifelé mutat. A negatív előjel azért szükséges, mert a [math]\text{d}Q_2[/math] hőmennyiséget akkor tekintjük pozitívnak, ha az a vizsgált térrészben lévő tömeg hőmérsékletét növeli. Azonban a felület normálisának iránya miatt (kifelé mutat) a térrészbe belépő hőmennyiség negatív értéként adódik.
A hőmérsékletek azonosságát kifejező egyenletbe helyettesítve:
[math]\text{d}\tau\int_{V} c\cdot\rho\cdot\frac{\partial T}{\partial \tau}~\text{d}V = \text{d}\tau\int_{V} q_V~\text{d}V -\text{d}\tau\int_{S} \vec{q}~\text{d}\vec{S}[/math].
Ez az összefüggés azt mutatja, hogy az [math]S[/math] felület által határolt [math]V[/math] térfogatban lévő közeg belső energiájának a vizsgált [math]\text{d}\tau[/math] idő alatt történő megváltozása az [math]S[/math] felületen keresztül vezetéssel belépő ls kilépő hőmennyiségek eredőjéből, valamint a [math]V[/math] térfogaton belül elhelyezkedő hőforrás által szolgáltatott hőmennyiségből adódik.
A Gauss-Osztrogradszkij tétel értelmében a jobb oldal második tagja átalakítható:
[math]\int_{S} \vec{q}~\text{d}\vec{S} = \int_{V} \nabla\cdot\vec{q}~\text{d}V[/math],
amit visszahelyettesítve és átrendezve a következő egyenletre vezet:
[math]\text{d}\tau\int_{V} c\cdot\rho\cdot\frac{\partial T}{\partial \tau}~\text{d}V = \text{d}\tau\int_{V} q_V~\text{d}V -\text{d}\tau\int_{V} \nabla\cdot\vec{q}~\text{d}V \rightarrow \text{d}\tau\int_{V} \big(c\cdot\rho\cdot\frac{\partial T}{\partial \tau} - q_V + \nabla\cdot\vec{q}\big)~\text{d}V = 0[/math]
Figyelembe véve azt, hogy az integrál zérus értéke az integrandusz zérus voltát jelenti, tehát
[math]c\cdot\rho\cdot\frac{\partial T}{\partial \tau} - q_V + \nabla\cdot\vec{q} = 0[/math].
Egy szilárd testben, amelyben a hő kizárólag vezetés útján terjed, a [math]\vec{q}[/math] hőáramsűrűség valamely helyen a hely környezetében uralkodó hőmérsékleteloszlás alapján megállapítható. A legnagyobb hőmérsékletváltozás irányába mutató gradiens vektor és a [math]\vec{q}[/math] hőáramsűrűség vektor iránya megegyezik. Azonban a tapasztalat szerint a hő mindig a csökkenő hőmérséklet irányába áramlik, tehát a a hőmérsékletgradiens vektor és a [math]\vec{q}[/math] hőáramsűrűség vektor értelme ellentétes. A hőáramsűrűség vektor abszolút értéke az egységnyi elmozdulásra jutó hőmérsékletcsökkenéssel , azaz a gradiens vektor abszolút értékével arányos. A kettő közötti arányossági tényező az adott anyag [math]\lambda[/math] [[math]\text{W}/(\text{m}\cdot\text{K})[/math]] hővezetési tényezője. A leírtak alapján, az úgynevezett Fourier-törvény:
[math]\vec{q} = \lambda\cdot(-\nabla~T) = -\lambda\cdot \nabla~T[/math].
Ezt az összefüggést felhasználva a hővezetés általános differenciálegyenlete:
[math]-\nabla(\lambda\cdot \nabla~T) + c\cdot\rho\cdot\frac{\partial T}{\partial \tau} = q_V[/math].
További egyszerűsítést jelent az esetünkben, hogy stacionárius hőáramlásról van szó, azaz nincs időbeli változás
[math]-\nabla(\lambda\cdot \nabla~T) = q_V[/math].
A feladatmegoldás során ezt a Poisson-egyenletet oldjuk meg, ahol [math]q_V[/math] [[math]\text{W}/\text{m}^3[/math]] az adott térfogatban keletkező veszteség.
Feladat II. része
A műszaki jelentés elkészítése és leadása a Moodle rendszerben PDF formátumban.
A műszaki jelentés a következő linken elérhető: Word; PDF.